The bird cherry-oat aphid (Rhopalosiphum padi L.) (Homoptera: Aphididae) is an important pest on cereals causing plant growth reduction but no specific leaf symptoms. Breeding of barley (Hordeum vulgare L.) for R. padi resistance shows that there are several resistance genes involved, reducing aphid growth. In an attempt to identify candidate sequences for resistance-related genes, we performed a microarray analysis of gene expression after two days of aphid infestation in two susceptible barley lines and two genotypes with partial resistance. One of the four lines is a descendant of two of the other genotypes. The analysis revealed large differences in gene induction between the four lines, indicating substantial variation in response even between closely related genotypes. Genes induced in the aphid-infested tissue were mainly related to defence, primary metabolism and signalling. Only twenty-four genes were induced in all lines, none of them related to oxidative stress or secondary metabolism. Few genes were down-regulated and none of those was common to all four lines. There were differences in aphid-induced gene regulation between resistant and susceptible lines, and results from control plants without aphids also revealed differences in constitutive gene expression between the two types of lines. Candidate sequences for both induced and constitutive resistance factors have been identified, among them a proteinase inhibitor, a Ser/Thr kinase and several thionins.
Microarray analysis of the interaction between the aphid Rhopalosiphum padi and host plants reveals both differences and similarities between susceptible and partially resistant barley lines.
No sample metadata fields
View SamplesQuiescent and dividing hemopoietic stem cells (HSC) display marked differences in their ability to move between the peripheral circulation and the bone marrow. Specifically, long-term engraftment potential predominantly resides in the quiescent HSC subfraction, and G-CSF mobilization results in the preferential accumulation of quiescent HSC in the periphery. In contrast, stem cells from chronic myeloid leukemia (CML) patients display a constitutive presence in the circulation. To understand the molecular basis for this, we have used microarray technology to analyze the transcriptional differences between dividing and quiescent, normal, and CML-derived CD34+ cells.
Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources.
Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A macrophage gene expression signature defines a field effect in the lung tumor microenvironment.
No sample metadata fields
View SamplesAJ mouse is susceptible to lung carcinogenesis from urethane treatment and is a good model for human adenocarcinoma. We completed a study using microarray analysis of bronchoalveolar lavage cells from control or urethane treated mice. A unique macrophage expression signature in the lung tumor microenvironment was able to correctly classify the lavage samples.
A macrophage gene expression signature defines a field effect in the lung tumor microenvironment.
No sample metadata fields
View SamplesWe treated intestinal enteroids continuously for 6 days with or without TgfbR1/2 inhibitor (LY2109761) or Tgfb1 ligand
Single cell lineage tracing reveals a role for TgfβR2 in intestinal stem cell dynamics and differentiation.
Specimen part
View SamplesWe treated intestinal organoids continuously for 5 days with or without TgfbR1/2 inhibitor (LY2109761) or Tgfb1 ligand
Single cell lineage tracing reveals a role for TgfβR2 in intestinal stem cell dynamics and differentiation.
Specimen part, Treatment
View SamplesMicroarray studies revealed that as a first hit, SV40 T/t-antigen causes deregulation of 462 genes in mammary gland cells (ME-cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell-proliferation specific and Rb-E2F dependent, causing ME-cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells, a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture, breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal-ME-cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal-ME-cells. The profile of retransformants shows that only 38 deregulated genes appear to be tumor-relevant and that none of them is considered to be a typical breast cancer gene.
Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals.
No sample metadata fields
View SamplesThe goal of this study was to identify genes which are differentiatlly expresesd upon induced inactivation of Rfx6 in beta cell in adult mice Overall design: Rfx6fl/fl; Ins1-CreERT2 (mut) and Rfx6fl/fl (ctrl) 8 weeks old mice were injected subcutaneously with tamoxifen daily during 3 days. Pancreatic islets were isolated 5 days after the first injection and RNA purified.
Rfx6 maintains the functional identity of adult pancreatic β cells.
No sample metadata fields
View SamplesAlternative promoters (APs) occur in >30% protein-coding genes and contribute to proteome diversity. However, large-scale analyses of AP regulation are lacking, and little is known about their potential physiopathologic significance. To better understand the transcriptomic impact of estrogens, which play a major role in breast cancer, we analyzed gene and AP regulation by estradiol in MCF7 cells using pan-genomic exon arrays. We thereby identified novel estrogen-regulated genes, and determined the regulation of AP-encoded transcripts in 150 regulated genes. In <30% cases, APs were regulated in a similar manner by estradiol, while in >70% cases, they were regulated differentially. The patterns of AP regulation correlated with the patterns of estrogen receptor (ER) and CCCTC-binding factor (CTCF) binding sites at regulated gene loci. Interestingly, among genes with differentially regulated APs, we identified cases where estradiol regulated APs in an opposite manner, sometimes without affecting global gene expression levels. This promoter switch was mediated by the DDX5/DDX17 family of ER coregulators. Finally, genes with differentially regulated promoters were preferentially involved in specific processes (e.g., cell structure and motility, and cell cycle). We show in particular that isoforms encoded by the NET1 gene APs, which are inversely regulated by estradiol, play distinct roles in cell adhesion and cell cycle regulation, and that their expression is differentially associated with prognosis in ER+ breast cancer. Altogether, this study identifies the patterns of AP regulation in estrogen-regulated genes, demonstrates the contribution of AP-encoded isoforms to the estradiol-regulated transcriptome, as well as their physiopathologic significance in breast cancer.
Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer.
Disease, Disease stage, Cell line, Time
View SamplesThis study was designed to compare the global gene expression change induced by the circulating, prodomain bound forms of BMP9 and BMP10 (pro-BMP9 and pro-BMP10) in human pulmonary arterial endothelial cells (PAECs). This is different from many previous studies which used the growth factor domain of BMP9 and/or BMP10.
Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms.
Sex, Age
View Samples