MicroRNA-155 (miR-155) is upregulated in primary effector CD8 T cells but is expressed at low amounts in nave cells. Anti-viral CD8 T cell responses and viral clearance were impaired in miR-155 deficient (bic-/-) mice, and this defect was intrinsic to CD8 T cells, as adoptively transferred bic-/- CD8 T cells generated greatly reduced primary and memory responses during infection. To understand the mechanism by which miR-155 regulates CD8 T cell activation, we analyzed the gene expression profiles of naive and in vitro activated wild-type and bic-/- CD8 T cells.
The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling.
Specimen part
View SamplesThe pathogenesis of MLL-fusion gene leukemias has been linked to upregulated expression of HOX genes and of the HOX-cofactor Meis1.The functions of the HOX/MEIS1 complex in leukemia however remain unclear. Here, we used inducible MEIS1-knockout mice coupled with MLL-AF9 knockin mice to decipher the role of MEIS1 in leukemia. We found that MEIS1 was critically required for established leukemia. Further, MEIS1 loss led to increased oxygen flux and apoptosis, while hypoxia reversed these effects. Finally, we identify HLF as a downstream mediator of MEIS1 in leukemia. Overexpression of HLF prevents oxygen flux and rescues the leukemia phenotype in MEIS1-deficient cells. Thus, the oncogenic effects of MEIS1 are at least partly mediated by an HLF-driven hypoxic state. Overall design: Mouse bone marrow MLL-AF9 knockin cells of conditional Meis1f/f or control genotypes were treated with vehicle or 1000 nM of 4-hydroxy tamoxifen for 24 hours in IMDM with 10% FBA and 10 ng/ml of murine GM-CSF, IL-3, IL-6, SCF. RNA was isolated from treated cells and submitted to gene expression and sequencing core of Cincinnati Children''s Hospital & Medical Center. A total of four samples were included, and two groups were assisgned. Comparison comprises mRNA expression profile of vehicle and 4-OHT treatment in control cells versus Meis1-deleted cells.
MEIS1 regulates an HLF-oxidative stress axis in MLL-fusion gene leukemia.
No sample metadata fields
View SamplesQuiescent and dividing hemopoietic stem cells (HSC) display marked differences in their ability to move between the peripheral circulation and the bone marrow. Specifically, long-term engraftment potential predominantly resides in the quiescent HSC subfraction, and G-CSF mobilization results in the preferential accumulation of quiescent HSC in the periphery. In contrast, stem cells from chronic myeloid leukemia (CML) patients display a constitutive presence in the circulation. To understand the molecular basis for this, we have used microarray technology to analyze the transcriptional differences between dividing and quiescent, normal, and CML-derived CD34+ cells.
Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources.
Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetics and Preeclampsia: Defining Functional Epimutations in the Preeclamptic Placenta Related to the TGF-β Pathway.
Specimen part, Disease, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.
Specimen part, Treatment
View SamplesPlacental Tissue Samples from 36 women (17 normotensive women, denoted with a P, and 19 preeclamptic women, denoted with a Q) were analyzed for differenital methylation
Epigenetics and Preeclampsia: Defining Functional Epimutations in the Preeclamptic Placenta Related to the TGF-β Pathway.
Specimen part, Disease, Race
View SamplesPAX8-PPARG fusion protein (PPFP) results from a t(2;3)(q13;p25) chromosomal translocation, is found in 30% of follicular thyroid carcinomas, and demonstrates oncogenic capacity in transgenic mice. A PPARG ligand, pioglitazone, is highly therapeutic in mice with PPFP thyroid carcinoma. We used our previously characterized transgenic mouse model of PPFP thyroid carcinoma to identify PPFP binding sites in vivo using ChIP-seq, and to identify genes and pathways regulated by PPFP with and without pioglitazone treatment via integration with RNA-seq and Affymetrix microarray data. This submission contains the Affymetrix microarray data. PPFP and pioglitazone regulated genes involved in lipid and fatty acid metabolism, ribosome function, immune processes, cell death and other cancer-related processes. The RNA-seq data yielded similar findings.
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.
Specimen part, Treatment
View SamplesRNA-seq was performed on eosinophils isolated from colons of naive C57/BL6 mice. Overall design: 2 samples of naive colonic eosinophils
Reuse of public, genome-wide, murine eosinophil expression data for hypotheses development.
Specimen part, Cell line, Subject
View SamplesMicroarray studies revealed that as a first hit, SV40 T/t-antigen causes deregulation of 462 genes in mammary gland cells (ME-cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell-proliferation specific and Rb-E2F dependent, causing ME-cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells, a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture, breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal-ME-cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal-ME-cells. The profile of retransformants shows that only 38 deregulated genes appear to be tumor-relevant and that none of them is considered to be a typical breast cancer gene.
Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals.
No sample metadata fields
View SamplesAlternative promoters (APs) occur in >30% protein-coding genes and contribute to proteome diversity. However, large-scale analyses of AP regulation are lacking, and little is known about their potential physiopathologic significance. To better understand the transcriptomic impact of estrogens, which play a major role in breast cancer, we analyzed gene and AP regulation by estradiol in MCF7 cells using pan-genomic exon arrays. We thereby identified novel estrogen-regulated genes, and determined the regulation of AP-encoded transcripts in 150 regulated genes. In <30% cases, APs were regulated in a similar manner by estradiol, while in >70% cases, they were regulated differentially. The patterns of AP regulation correlated with the patterns of estrogen receptor (ER) and CCCTC-binding factor (CTCF) binding sites at regulated gene loci. Interestingly, among genes with differentially regulated APs, we identified cases where estradiol regulated APs in an opposite manner, sometimes without affecting global gene expression levels. This promoter switch was mediated by the DDX5/DDX17 family of ER coregulators. Finally, genes with differentially regulated promoters were preferentially involved in specific processes (e.g., cell structure and motility, and cell cycle). We show in particular that isoforms encoded by the NET1 gene APs, which are inversely regulated by estradiol, play distinct roles in cell adhesion and cell cycle regulation, and that their expression is differentially associated with prognosis in ER+ breast cancer. Altogether, this study identifies the patterns of AP regulation in estrogen-regulated genes, demonstrates the contribution of AP-encoded isoforms to the estradiol-regulated transcriptome, as well as their physiopathologic significance in breast cancer.
Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer.
Disease, Disease stage, Cell line, Time
View Samples