The brain renin-angiotensin system (RAS) stimulates resting metabolic rate in part through a mechanism involving suppression of the circulating RAS. This effect appears to be mediated through a reduction in angiotensin AT2 receptor (AT2R) signaling within inguinal fat. To examine the molecular mechanisms underlying this effect, mice with hyperactivity of the brain RAS (“sRA” mice, expressing human renin via the synapsin promoter and human angiotensinogen via its own promoter) and littermate controls were chronically infused with vehicle or the AT2R specific agonist, CGP-42112a (CGP, 90 ng/hr, 8 wk, sc). To identify altered signaling pathways, total RNA was isolated from inguinal adipose tissue and transcript abundance was quantitated by RNA-Seq. Overall design: Four groups of mice were studied: controls receiving either a saline infusion (CON) or a specific angiotensin type 2 receptor agonist (CON_CGP), transgenic mice with specific activation of the brain renin-angiotensin receiving either a saline infusion (SRA) or a specific angiotensin type 2 receptor agonist (SRA_CGP). A sample size of N=3-4 was used for each of the four groups.
Suppression of Resting Metabolism by the Angiotensin AT2 Receptor.
Sex, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis.
Sex, Specimen part, Cell line
View SamplesOur purpose was to investigate genes and molecular mechanisms involved in patients with Leber congenital amaurosis (LCA). Fibroblasts from two unrelated clinically-identified patients (Coriell) were reprogrammed to pluripotency by retroviral transduction. These human induced Pluripotent Stem Cells (hiPSCs) were differentiated into neural stem cells (NSC) that mimicked the neural tube stage and retinal pigmented epithelial (RPE) cells that could be targeted by the disease. A genome wide transcriptome analysis was performed with Affymetrix Exon Array GeneChip, comparing LCA-hiPSCs derivatives to controls. The aim was to identify differentially expressed genes which may be associated with early developmental defect before the establishment of mature retinal circuitry.
Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis.
Sex, Specimen part, Cell line
View SamplesOur purpose was to investigate genes and molecular mechanisms involved in patients with Leber congenital amaurosis (LCA). Fibroblasts from two unrelated clinically-identified patients (Coriell) were reprogrammed to pluripotency by retroviral transduction. These human induced Pluripotent Stem Cells (hiPSCs) were differentiated into neural stem cells (NSC) that mimicked the neural tube stage and retinal pigmented epithelial (RPE) cells that could be targeted by the disease. A genome wide transcriptome analysis was performed with Affymetrix Exon Array GeneChip, comparing LCA-hiPSCs derivatives to controls. The aim was to identify differentially expressed genes which may be associated with early developmental defect before the establishment of mature retinal circuitry.
Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis.
Sex, Specimen part, Cell line
View SamplesThis data provides evidence that elevation of cAMP levels has a dramatic effect on the transcriptome of yeast cells, with particular emphasis on mitochondrial function and the promotion of ROS production
cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation.
Treatment
View SamplesPEST-domain-enriched tyrosine phosphatase (PEP) is a cytoplasmic protein tyrosine phosphatase that regulates immune cell functions, including mast cell functions. Using bone marrow derived mast cells (BMMCs) from PEP+/+ and PEP-/- mice, RNA-seq data showed that dinitrophenol (DNP) - activated PEP-/- BMMCs have misregulated gene expression, with some cytokine/chemokine genes (eg.TNFa, IL13, CSF2) showing reduced gene expression in the dinitrophenol (DNP) - activated PEP-/- BMMCs compared to (DNP)-activated PEP+/+ BMMCs. Also, the ability of the glucocorticoid dexamethasone (Dex) to negatively regulate DNP - induced COX-2 gene expression in PEP-/- BMMCs was inhibited compared to the PEP+/+ BMMCs. Overall design: Biological replicates are sequenced and analyzed. The samples are either wild-type or mutant for PEP and cells were sensitized with Ig-E, activated with Dinitrophenol and glucocorticoid treatment done with Dexamethasone.
Transcriptomic data on the role of PEST-domain-enriched tyrosine phosphatase in the regulation of antigen-mediated activation and antiallergic action of glucocorticoids in mast cells.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesThe canonical role of eEF1A is to deliver the aminoacyl tRNA to the ribosome, we have used the yeast model system to investigate further roles for this protein.
Inappropriate expression of the translation elongation factor 1A disrupts genome stability and metabolism.
No sample metadata fields
View SamplesTriple-negative (TN) breast cancers need to be refined in order to identify therapeutic subgroups of patients.
Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response.
Disease
View SamplesGlucosamine proved to be a potent, broad-spectrum inhibitor of IL-1beta. Of the 2,813 genes whose transcription was altered by IL-1beta stimulation (p<0.0001), glucosamine significantly blocked the response in 2,055 (~73%). Glucosamine fully protected the chondrocytes from IL-1-induced expression of inflammatory cytokines, chemokines and growth factors as well as proteins involved in PGE2 and NO synthesis. It also blocked the IL-1-induced expression of matrix specific proteases such as MMPs -3,-9,-10,-12 and ADAMTS-1.
Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta.
Age
View SamplesSomatic mutations activating MAPK signaling in disorders of brain overgrowth and in diffuse glioma have recently been reported in pediatric neurology. Here we developed a progressive zebrafish model of glioma based on somatic expression of oncogenes that activate MAPK-AKT signalling (H-RASG12V, K-RASG12D, AKT, EGFRv3, BRAFV600E) in neural progenitor cells. Oncogenic HRAS was the most effective in activating MAPK signaling and caused the development of different types of growth disorders in juvenile fish: from benign dysplasia/heterotopia to invasive tumors of the telencephalon, midbrain and cerebellum. We used this model to clarify the molecular events leading to malignant tumors instead of benign lesions. Specific signatures distinguish benign heterotopia from tumors and establish that tumors require persistent activation of MAPK/ERK. Moreover, analysis of global RNA expression showed that brain tumors expressed a gene signature similar to the mesenchymal glioblastoma subtype Overall design: We performed transcriptome analysis (RNA-Seq) of 3 UAS:HRASV12G brains, which carried tumorigenic lesions in the telencephalon, midbrain and IV ventricle and compared them with tumor free, age matched brains.
A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth.
No sample metadata fields
View Samples