Regulatory T (Treg) maintain the tumor microenvironment in an immunosuppressive state preventing effective anti-tumor immune response. A possible strategy to overcome Treg cell suppression focuses on OX40, a costimulatory molecule expressed constitutively by Treg cells while induced in activated effector T (Teff) cells. OX40 stimulation by the agonist mAb OX86 inhibits Treg cell suppression and boosts Teff cell activation. Here we uncover the mechanisms underlying the therapeutic activity of OX86 treatment dissecting its distinct effects on Treg and on effector memory T (Tem) cells, which are the most abundant CD4+ populations strongly expressing OX40 at the tumor site. In response to OX86, tumor-infiltrating Treg cells produced significantly less interleukin 10 (IL-10), possibly in relation to a decrease in the transcription factor IRF1. Tem cells responded to OX86 by upregulating surface CD40L expression, providing a licensing signal to dendritic cells (DCs). The CD40L/CD40 axis was required for Tem cell-mediated in vitro DC maturation and in vivo DC migration. Accordingly, OX86 treatment was no longer therapeutic in CD40 KO mice. In conclusion, following OX40 stimulation, blockade of Treg cell suppression and enhancement of the Tem cell adjuvant effect both concurred to free DCs from immunosuppression and to activate the immune response against the tumor.
Intratumor OX40 stimulation inhibits IRF1 expression and IL-10 production by Treg cells while enhancing CD40L expression by effector memory T cells.
No sample metadata fields
View SamplesCritically ill intensive care unit (ICU) patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decrease quality of life of survivors. Acute Quadriplegic Myopathy (AQM) is one of the most common neuromuscular disorders associated with ICU-acquired muscle weakness. Although there are no available treatments for the ICU-acquired muscle weakness, it has been demonstrated that early mobilization can improve its prognosis and functional outcomes. This study aims at improving our understanding of the effects of passive mechanical loading on skeletal muscle structure and function by using a unique experimental rat ICU model allowing analyses of the temporal sequence of changes in mechanically ventilated and pharmacologically paralyzed animals at durations varying from 6 h to 14 days. Results show that passive mechanical loading alleviated the muscle wasting and the loss of force-generation associated with the ICU intervention, resulting in a doubling of the functional capacity of the loaded vs. unloaded muscles after a 2-week ICU intervention. We demonstrated that the improved maintenance of muscle structure and function is likely a consequence of a reduced oxidative stress, and a reduced loss of the molecular motor protein myosin. A complex temporal gene expression pattern, delineated by microarray analysis, was observed with loading-induced changes in transcript levels of sarcomeric proteins, muscle developmental processes, stress response, ECM/cell adhesion proteins and metabolism. Thus, the results from this study show that passive mechanical loading alleviates the severe negative consequences on muscle structure and function associated with mechanical silencing in ICU patients, strongly supporting early and intense physical therapy in immobilized ICU patients.
Sparing of muscle mass and function by passive loading in an experimental intensive care unit model.
Sex, Specimen part, Time
View SamplesUMR106-01 osteoblastic cells are a model for studying bone mineralization. We have shown that mineralization is temporally synchronized within cultures grown under defined conditions . Cells are plated at time zero and differentiate into osteoblastic phenotype by 64 h later. If an exogenous phosphate source is added to the cultures, the cells form and deposit hydroxyapatite mineral within distinct extracellular supramolecular lipid protein complexes termed biomineralization foci (BMF) starting 12 h later. Mineralization is largely complete by 24 h later (88 h after plating). We have also shown that AEBSF, covalent serine protease inhibitor, blocks mineralization within BMF and inhibits the fragmentation of several proteins related to biomineralization. The present experiment was designed to test whether AEBSF treatment for 12 h has an effect on transcription by UMR106-01 osteoblastic cells. AEBSF is known to inactivate several serine proteases including SKI-1 (site 1, subtilisin kexin protease-1).SKI-1 functions intracellularly to activate transmembrane bound transcription factor precursors releasing the transcriptionally active N-terminal portions to imported into the nucleus. Thus, if AEBSF blocks transcription of mineralization related genes, it would support a role for SKI-1 in gene regulation in mineralizing UMR106-01 osteoblastic cells.
Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization.
Cell line
View SamplesUse of expression data to analyse ovarian cancer often yields long lists of genes that do not agree across various studies. Copy number however is more stable and can reliable predict important regions of change. Using matched copy number and expressiion data helps accurately identify novel drivers of ovarian cancer.
Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis.
Age, Disease stage
View SamplesThe objective of this experiment was to determine global gene expression change in triple negative cell line upon knockdown of TGFBR3. Genotype specific differences in expression profiles have been evaluated using human HuGene1.0-ST affymetrix array. RNA was extracted from SUM159 controls and SUM159 TGFBR3KD cells cultured in 3-dimensional in vitro system.
Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer.
Cell line
View SamplesMycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille CalmetteGurin. Differentially expressed genes were identified (adjusted P-value 0.01) and interaction networks generated across an infection time course of 2, 6 and 24 h. The largest number of biological interactions was observed in the 24 h network, which exhibited small-worldscale-free network properties. The 24 h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1 and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immunomodulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.
Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis.
Sex, Age, Specimen part, Treatment, Time
View SamplesTo define the molecular regulators of metastasis of triple-negative breast cancer, we conducted a rigorous characterization of four isogenic populations of MDA-MB-231 human triple-negative breast cancer cells that display a range of intrinsic spontaneous metastatic capacities in immuno-deficient mice, from non-metastatic to highly metastatic to lung, liver, spleen and spine. PAT-Seq gene expression profiling of primary tumor cells identified the fibroblast growth factor homologous factor, FGF13, as a candidate metastatic virulence gene highly upregulated in aggressively metastatic MDA-MB-231HM tumors. Overall design: Gene expression analysis from PAT-Seq of 4 increasingly metastatic breast cancer xenograft tumours
Functional and genomic characterisation of a xenograft model system for the study of metastasis in triple-negative breast cancer.
Specimen part, Subject
View SamplesBackground: Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix GeneChip Bovine Genome Array with features representing more than 23,000 gene transcripts and over 19,000 gene probe sets.
Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes.
Sex, Specimen part
View SamplesPurpose of arrays were to determine what the effect of deletion of Mbtps1 gene was on gene expression of osteocytes in bone in vivo. DMP1 cre driver was used to delete the Mbtps1 gene in osteocytes and osteoblasts in bone. We then isolated osteocyte enriched bone particles from 40 week old male mice to determine the effect of this deletion on gene expression. We have previously shown that Mbtps1 is needed for transcription of Phex, DMP1, and MEPE genes in osteoblasts in culture. Arrays showed these genes were reduced as expected in osteocytes in vivo. Controls represent osteocyte enriched bone from 40 week old littermates. Also, as expected, Mbtps1 expression was reduced in these knockout mice
Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age.
Sex
View SamplesMycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48?hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms. Overall design: Whole-transcriptome analysis of M. bovis- and non-infected alveolar macrophages from ten calves (n = 10) at 2, 6, 24 and 48 hours (h) post-infection using RNA-sequencing (RNA-seq).
RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli.
Sex, Specimen part, Subject, Time
View Samples