We have derived hESC from biopsied blastomeres of cleavage stage embryos under virtually the same conditions we used for the derivation of hESC lines from inner cell mass of blastocyst stage embryos. Blastomere-derived hESC lines exhibited all the standard characteristics of hESC including undifferentiated proliferation, genomic stability, expression of pluripotency markers and the ability to differentiate into the cells of all three germ layers both in vitro and in vivo. To examine whether hESC lines derived from two developmental stages of the embryo differ in gene expression, we have subjected three blastomere-derived hESC lines and two ICM-derived hESC lines grown under identical culture conditions to transcriptome analysis using gene expression arrays. Unlike previously reported comparisons of hESC lines which demonstrated, apart from core hESC-associated pluripotency signature, significant variations in gene expression profiles of different lines, our data show that hESC lines derived and grown under well-controlled defined culture conditions adopt nearly identical gene expression profiles. Moreover, blastomere-derived and ICM-derived hESC exhibited very similar transcriptional profiles independent of the developmental stage of the embryo from which they originated. Furthermore, this profile was evident in very early passages of the cells and did not appear to be affected by extensive passaging. These results suggest that during derivation process cells which give rise to hESC acquire virtually identical stable phenotype and are not affected by the developmental stage of the starting cell population.
Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles.
Specimen part, Disease, Cell line
View SamplesMycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille CalmetteGurin. Differentially expressed genes were identified (adjusted P-value 0.01) and interaction networks generated across an infection time course of 2, 6 and 24 h. The largest number of biological interactions was observed in the 24 h network, which exhibited small-worldscale-free network properties. The 24 h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1 and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immunomodulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.
Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis.
Sex, Age, Specimen part, Treatment, Time
View SamplesBackground: Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix GeneChip Bovine Genome Array with features representing more than 23,000 gene transcripts and over 19,000 gene probe sets.
Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes.
Sex, Specimen part
View SamplesWe profiled gene expression at the maternal-fetal interface during the second trimester of pregnancy (13-22 wks) in trisomy 13 (T13; Patau syndrome, n = 4), trisomy 18 (T18; Edwards syndrome, n = 4), trisomy 21 (T21; Down syndrome, n = 8), and in euploid pregnancies (n = 4). FISH confirmed the ploidy of the samples. Global transcriptional profiling identified differentially expressed transcripts ( 2-fold) in T21 (n = 160), T18 (n = 80), and T13 (n = 125). The majority were upregulated. Unexpectedly, most of the misexpressed genes were not located on the relevant trisomic chromosome, suggesting genome-wide dysregulation. A much smaller proportion of the differentially expressed transcripts were encoded on the aneuploid chromosome, also implicating gene dosage (1-5). In T21, <10% of the genes were transcribed from that chromosome, all but one from the Down syndrome critical region (21q21-22), which is postulated to play an important role in the clinical phenotype. For T13 and T18, a higher proportion of the overexpressed genes were located on the trisomic chromosome. In T13, 15% of the upregulated genes were on the affected chromosome; 15 resided on the long arm, 13q11-14. In T18, the percentage increased to 24, 15 of which were also located on the long arm (18q11-22). Our data suggested that the placental (and possibly fetal) phenotypes that are associated with T13, T18 and T21 are driven by the combined effects of genome-wide phenomena and increased gene dosage from critical regions of the triploid chromosome.
Placental transcriptomes in the common aneuploidies reveal critical regions on the trisomic chromosomes and genome-wide effects.
Specimen part
View SamplesTranscriptomic characterization of cultured primary human cytrophoblasts (2nd trimester) undergoing differentiation/invasion in vitro.
Transcriptional Dynamics of Cultured Human Villous Cytotrophoblasts.
Specimen part
View SamplesMycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48?hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms. Overall design: Whole-transcriptome analysis of M. bovis- and non-infected alveolar macrophages from ten calves (n = 10) at 2, 6, 24 and 48 hours (h) post-infection using RNA-sequencing (RNA-seq).
RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli.
Sex, Specimen part, Subject, Time
View SamplesBackground: Mycobacterium bovis, the causative agent of bovine tuberculosis, is a major cause of mortality in global cattle populations. Macrophages are among the first cells types to encounter M. bovis following exposure and the response elicited by these cells is pivotal in determining the outcome of infection. Here, a functional genomics approach was undertaken to investigate global gene expression profiles in bovine monocyte-derived macrophages (MDM) purified from seven age-matched non-related females, in response to in vitro challenge with M. bovis (multiplicity of infection 2:1). Total cellular RNA was extracted from non-challenged control and M. bovis-challenged MDM for all animals at intervals of 2 hours, 6 hours and 24 hours post-challenge and prepared for global gene expression analysis using the Affymetrix GeneChip Bovine Genome Array.
Global gene expression and systems biology analysis of bovine monocyte-derived macrophages in response to in vitro challenge with Mycobacterium bovis.
Sex, Age, Specimen part, Time
View SamplesBackground: Mycobacterium avium subspecies paratuberculosis (MPTb) is the causative agent of Johnes disease, an intestinal disease of ruminants with major economic consequences. MPTb bacilli are phagocytosed by host macrophages upon exposure where they persist, resulting in lengthy subclinical phases of infection that can lead to immunopathology and disease dissemination. Consequently, analysis of the macrophage transcriptome in response to MPTb infection can provide valuable insights into the molecular mechanisms that underlie Johnes disease. Here, we investigate pan-genomic gene expression in bovine monocyte-derived macrophages (MDM) purified from seven age-matched non-related females, in response to in vitro infection with MPTb (multiplicity of infection 2:1) at intervals of 2 hours, 6 hours and 24 hours post-infection.
Pan-genomic analysis of bovine monocyte-derived macrophage gene expression in response to in vitro infection with Mycobacterium avium subspecies paratuberculosis.
Sex, Age, Specimen part, Time
View SamplesMurine prostate epithelial cells (PECs) were obtained from Ccnd1-/- and Ccnd1+/+ FvB mice (2-3 months of age). RNA extracted from PECs (3 technical replicates for each group) was labeled and used to probe Affymetrix 430_2.0 arrays.
Cyclin D1 Promotes Androgen-Dependent DNA Damage Repair in Prostate Cancer Cells.
No sample metadata fields
View SamplesPlacental trophoblasts are key determinants of in utero development. Mouse trophoblast stem cells (mTSCs), which were first derived over a decade ago, are a powerful cell culture model for studying their self-renewal or differentiation. Our attempts to isolate an equivalent population from the trophectoderm of human blastocysts generated colonies that quickly differentiated in vitro. This finding suggested that the human placenta has another progenitor niche. Here we show that the chorion is one such site. Initially, we immunolocalized pluripotency factors and trophoblast fate determinants in the early-gestation placenta, amnion and chorion. Immunoreactive cells were numerous in the chorion. We isolated these cells and plated them in medium containing FGF and an inhibitor of activin/nodal signaling, which is required for human embryonic SC self-renewal. Colonies of polarized cells with a limited lifespan emerged. Trypsin dissociation yielded continuously self-replicating monolayers. Colonies and monolayers formed the two major human trophoblast lineagesmultinucleate syncytiotrophoblasts and invasive cytotrophoblasts (CTBs). Transcriptional profiling experiments revealed the factors associated with the self-renewal or differentiation of human chorionic trophoblast progenitor cells (TBPCs). They included imprinted genes, NR2F1/2, HMGA2 and adhesion molecules that were required for TBPC differentiation. Together, the results of these experiments suggested that the chorion is one source of epithelial CTB progenitors. These findings explain why CTBs of fully formed chorionic villi have a modest mitotic index and identify the chorionic mesoderm as a niche for TBPCs that support placental growth.
Establishment of human trophoblast progenitor cell lines from the chorion.
No sample metadata fields
View Samples