This SuperSeries is composed of the SubSeries listed below.
Gene expression effects of glucocorticoid and mineralocorticoid receptor agonists and antagonists on normal human skeletal muscle.
Sex, Specimen part
View SamplesTo define the direct gene expression changes in normal human skeletal muscle with mineralocorticoid and glucocorticoid receptor agonist and antagonist treatment.
Gene expression effects of glucocorticoid and mineralocorticoid receptor agonists and antagonists on normal human skeletal muscle.
Sex, Specimen part
View SamplesTo uncover whether aldosterone induces gene expression changes through mineralocorticoid or glucocorticoid receptors and determine if eplerenone and spironolactone could block aldosterone induced gene expression to the same extent
Gene expression effects of glucocorticoid and mineralocorticoid receptor agonists and antagonists on normal human skeletal muscle.
Sex, Specimen part
View SamplesThe mineralocorticoid aldosterone mainly produced by the adrenal gland is essential for life but an abnormal excessive secretion causes severe pathological effects including hypertension and target organ injury in the heart and kidney. The aim of this study was to determine the gene regulatory network triggered by aldosterone secretagogues in a non transformed cell system. Freshly isolated rat adrenal zona glomerulosa cells were stimulated with the two main aldosterone secretagogues, angiotensin II and potassium, for two hours and subjected to whole genome expression studies using multiple biological and bioinformatics tools. Several genes were differentially expressed by Ang II (n=133) or potassium (n=216). Genes belonging to the nucleic acid binding and transcription factor activity categories were significantly enriched. A subset of the most regulated genes were confirmed by real-time RT-PCR and then their expression analyzed in time curve studies. Differentially expressed genes were grouped according to their time-response expression pattern and their promoter regions analyzed for common regulatory transcription factors binding sites. Finally, data mining with gene promoters, transcription factors and literature databases were performed to generate gene interaction networks for either Ang II or potassium. This study provides for the first time a complete study of the genes that are regulated, and the interaction between them, by aldosterone secretagogues in rat adrenal cells. Increasing our knowledge of adrenal physiology and gene regulation in non transformed cell systems would lead us to a better approach for discovery of candidate genes involved pathological conditions of the adrenal cortex.
Gene expression profile in rat adrenal zona glomerulosa cells stimulated with aldosterone secretagogues.
No sample metadata fields
View SamplesTo test for a function effect of mineralocorticoid receptor modulation in skeletal muscle, global gene expression analysis was conducted on human myltubes treated with a mineralocorticoid receptor agonist or antagonist.
Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target.
Sex
View SamplesTo identify the gene expression differences in skeletal muscles resulting from treatment of dystrophic mice with spironolactone plus lisinopril
Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target.
Sex, Age, Treatment
View SamplesPURPOSE
Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer.
Specimen part, Disease
View SamplesLongevity mechanisms increase lifespan by counteracting the effects of aging. However, whether longevity mechanisms counteract the effects of aging continually throughout life, or whether they act during specific periods of life, preventing changes that precede mortality is unclear. Here, we uncover transcriptional drift, a phenomenon that describes how aging causes genes within functional groups to change expression in opposing directions. These changes cause a transcriptome-wide loss in mRNA stoichiometry and loss of co-expression patterns in aging animals, as compared to young adults. Using Caenorhabditis elegans as a model, we show that extending lifespan by inhibiting serotonergic signals by the antidepressant mianserin attenuates transcriptional drift, allowing the preservation of a younger transcriptome into an older age. Our data are consistent with a model in which inhibition of serotonergic signals slows age-dependent physiological decline and the associated rise in mortality levels exclusively in young adults, thereby postponing the onset of major mortality. Overall design: In this study set out to measure aging in the transcriptome by determining drift-variance changes with age in C.elegans. We set up three different cohorts of water or mianserin treated animals. The title of each cohort indicates the treatment (e.g. h2o or mia), the concentration (mia2, mia10, mia50), the day when the treatment was started (e.g. d1= day 1 of adulthood) and the day when the sample was collected (e.g. d10= day 10 of adulthood). cohort #1: Celegans was treated with water or mianserin (50uM) on day 1 and RNA was harvested on day1 (water only), d3, d5 and day 10 (file titles: h2o d1/d1, h2o d1/d3, h2o d1/d5, h2o d1/d10, mia50 d1/d3, mia50 d1/d5, mia50 d1/d10) cohort #2: Celegans was treated with mianserin (50uM) starting on day 3, and day 5, RNA was harvested on day 5 or 10 (file titles: mia50 d3/d10, mia50 d5/d10, mia50 d3/d5) cohort #3: Celegans was treated with mianserin 2 uM and 10 uM Mianserin on day 1 and Rna harvested on day 5 (file titles: mia2 d1/d5, mia10 d1/d5)
Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality.
Subject
View SamplesCalicum plays critical roles in developing T cells, promoting survival, proliferation, and differentiation at multiple stages of maturation. Calcium release from intracellular stores due to T cell receptor and pre-T cell receptor signaling is thought to require the inositol triphosphate receptors (Itpr), however the requirement for these receptors has not been investigated. We used microarrays to examine gene expression differences between control and Itpr deficient T cell progenitors.
Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia.
Sex, Age, Specimen part
View SamplesAccumulation of activated cardiac fibroblasts plays a key role in heart failure progression. These cells deposit excessive extracellular matrix that leads to mechanical stiffness, myocyte uncoupling and ischemia. To investigate whether two developmentally distinct cardiac fibroblast populations exhibit distinct expression profiles in response to cardiac injury, and therefore might necessitate distinct therapeutic targeting, we performed microarray analysis on FACS sorted cells. Tie2cre lineage traced CFs, non Tie2cre lineage traced cardiac fibroblasts and endothelial cells were isolated from left ventricle of SHAM operated and banded hearts at the onset of fibrosis, one week after surgery.
Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis.
Sex, Specimen part
View Samples