In this experiment we compared total RNA from two commonly used choriocarcinoma cell lines, JEG3 and BeWo, to identify differentially expressed transcripts.
Microarray analysis of BeWo and JEG3 trophoblast cell lines: identification of differentially expressed transcripts.
No sample metadata fields
View SamplesMice lacking the beta 2 subunit (Chrnb2) of the neuronal nicotinic acetylcholine receptor display altered retinal waves and disorganized projections of the retinal ganglion cells to the lateral geniculate nucleus (LGN). mRNA populations from retinas and LGN from Chrnb2-/-and wild type (C57BL/6J) mice were compared at 4 days postnatal, when RGC segregation to the LGN begins in WT mice. Retinal mRNAs were also compared at adulthood.
Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes.
Sex, Specimen part
View SamplesTo describe normal cardiac and brain development during late first and early second trimester in human fetuses using microarray and pathways analysis and the creation of a corresponding normal database. RNA from recovered tissues was used for transcriptome analysis with Affymetrix 1.0 ST microarray chip. From the amassed data we investigated differences in cardiac and brain development within the 10-18 GA period dividing the sample by GA in three groups: 10-12 (H1), 13-15(H2) and 16-18(H3) weeks. A fold change of 2 or above adjusted for a false discovery rate of 5% was used as initial cut-off to determine differential gene expression for individual genes. Test for enrichment to identify functional groups were carried out using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Array analysis correctly identified the cardiac specific genes, and transcripts reported to be differentially expressed were confirmed by qRT-PCR.
Metabolic gene profile in early human fetal heart development.
Specimen part
View SamplesTrastuzumab (Herceptinâ„¢), a humanized monoclonal antibody targeting the extracellular domain of human epidermal growth factor receptor-2 (HER2), is one of the most successful examples of targeted therapies for HER2-positive breast cancer. However, drug resistance remains daunting challenges. New combinatorial regimen of CDK4/6 inhibitors plus trastuzumab is currently under active clinical investigations. In this study, we seek to prospectively model the in vivo response to CDK4/6 inhibitor Palbociclib (Pal) plus trastuzumab (Ab) using transgenic Her2/Neu mouse model in parallel with the current clinical trial scenario. We performed single cell RNA-seqencing (Drop-seq) to profile and compare tumor cells and infiltrated immune cells derived from control, Ab+Pal sensitive/residual (APS) and resistant/progressive (APR) tumors. We revealed that although Ab+Pal treatment enhanced antigen processing, presentation and interferon signaling on tumor cells, a distinct immunosuppressive immature myeloid cells (IMCs) infiltrated in the resistant tumor microenvironment to promote resistant phenotype. Based on single cell gene set enrichment analysis (profiling) guided drug screening, we identified and evaluated a combinatorial immunotherapy regimen. We found that combinatorial immunotherapy with receptor tyrosine kinase inhibitor Cabozantinib and immune checkpoint blockades overcome Ab+Pal resistance by inhibiting IMCs and enhancing anti-tumor immunity. Moreover, our rationally designed sequential combinatorial regimens enabled durable response and sustained controlling of the emergence of acquired resistance, thus significantly improved outcomes of rapidly evolving Her2/Neu positive breast cancers. Our results implicate that single-cell RNA sequencing profiling guided combinatorial immunotherapy as a strategy to mitigate the emergence of resistance and to achieve long-term therapeutic benefit merits clinical translation. Overall design: Drop-seq of tumor cells and tumor infiltrating immune cells derived from FVB/N MMTV-neu202Mul mice with different treatment/phenotypes (sensitive and resistant tumors).
Single-cell profiling guided combinatorial immunotherapy for fast-evolving CDK4/6 inhibitor-resistant HER2-positive breast cancer.
Specimen part, Subject
View SamplesNlrp6-/- lamina propria Ly6C-hi monocytes in response to AOM/DSS have deficient TNF production, but increased production of other pro-inflammatory cytokines as compared to WT
NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury.
Specimen part
View SamplesObjective Recent evidence indicates that the adult hematopoietic system is susceptible to diet-induced lineage skewing. It is not known whether the developing hematopoietic system is subject to metabolic programming via in utero high fat diet (HFD) exposure, an established mechanism of adult disease in several organ systems. We previously reported substantial losses in offspring liver size with prenatal HFD. As the liver is the main hematopoietic organ in the fetus, we asked whether the developmental expansion of the hematopoietic stem and progenitor cell (HSPC) pool is compromised by prenatal HFD and/or maternal obesity. Methods We used quantitative assays, progenitor colony formation, flow cytometry, transplantation, and gene expression assays with a series of dietary manipulations to test the effects of gestational high fat diet and maternal obesity on the day 14.5 fetal liver hematopoietic system. Results Maternal obesity, particularly when paired with gestational HFD, restricts physiological expansion of fetal HSPCs while promoting the opposing cell fate of differentiation. Importantly, these effects are only partially ameliorated by gestational dietary adjustments for obese dams. Competitive transplantation reveals compromised repopulation and myeloid-biased differentiation of HFD-programmed HSPCs to be a niche-dependent defect, apparent in HFD-conditioned male recipients. Fetal HSPC deficiencies coincide with perturbations in genes regulating metabolism, immune and inflammatory processes, and stress response, along with downregulation of genes critical for hematopoietic stem cell self-renewal and activation of pathways regulating cell migration. Conclusions Our data reveal a previously unrecognized susceptibility to nutritional and metabolic developmental programming in the fetal HSPC compartment, which is a partially reversible and microenvironment-dependent defect perturbing stem and progenitor cell expansion and hematopoietic lineage commitment. Overall design: Examination of differentially expressed genes between gestational day 15 (+/- 0.5 days) C57BL/6 mouse fetal livers from diet-induced (60% fat diet) obese or control female mice.
Maternal high-fat diet and obesity compromise fetal hematopoiesis.
No sample metadata fields
View SamplesHematopoietic stem cells (HSC) sustain long-term reconstitution of hematopoiesis in primary transplantation recipients. Few HSC can serially reconstitute secondary recipients, and their identity and contribution to normal hematopoiesis remain moot. We directed transgene expression to a distinct fraction of HSC in the adult bone marrow. Epxression of the reporter transgene segregated with reconstituting activity during secondary transplantations. The labeled cells had an undifferentiated phenotype and expression profile, were slow-cycling and localized to the vascular niche. Inducible genetic labeling showed the transgene-expressing HSC gave rise to other cells within the HSC populations, confirming their top position in the differentiation hierarchy. Importantly, labeled HSC gave rise to more than two-thirds of all myeloid cells and platelets in adult mice, and this contribution could be further accelerated by interferon response. Thus, the rare "top-level" HSC with serial reconstitution capacity also serve as the major source of endogenous hematopoiesis in adult animals. Overall design: Sorted LSK CD48- CD150+ Map17-GFP+ and Map17-GFP- HSCs and LSK CD48+ CD150- Map17-GFP-MPPs were sequenced for mRNA profiling.
Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adult Animals.
Cell line, Subject
View SamplesEmbryonic stem cells (ESCs) maintain high genomic plasticity, essential for their capacity to enter diverse differentiation pathways. Post-transcriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2BK120ub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of long genes during ESC differentiation. Furthermore, we identify USP44 as a deubiquitinase whose downregulation by differentiation signals contributes to the increase in H2BK120ub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner.
RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation.
Cell line, Treatment
View SamplesA prevalent hypothesis for the cell-to-cell coordination of the phenomena of early development is that a defined mixture of different mRNA species at specific abundances in each cell determines fate and behavior. With this dataset we explore this hypothesis by quantifying the abundance of every mRNA species in every individual cell of the early C. elegans embryo, for which the exact life history and fate is precisely documented. Overall design: Embryos of the 1-, 2-, 4-, 8- and 16-cell stage were dissected into complete sets of single cells, and each cell from each set was sequenced individually using SMARTer technology. 5-9 replicates were generated for each stage. Most cell identities were unknown upon sequencing, but were deduced from by their transcriptomes post hoc.
A Transcriptional Lineage of the Early C. elegans Embryo.
Specimen part, Subject
View SamplesExpression of the MT1-MMP gene induces a significant upregulation of of oncogenes and tumorignenic genes in 184B5-MT1 cells.
Membrane type-1 matrix metalloproteinase confers aneuploidy and tumorigenicity on mammary epithelial cells.
Cell line
View Samples