In order to obtain a global picture regarding regulation of p53 in liver cells we used HepG2 hepatoma cells.We created two isogenic sub-cultures of HepG2 cells with altered expression of p53.
Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53.
Specimen part, Cell line
View SamplesRecently, a frequent chromosomal aberration fusing Androgen regulated TMPRSS2 promoter and the ERG gene (T/ERG) was discovered in prostate cancer. Several studies demonstrated cooperation between the T/ERG and other defective pathways in cancer progression however, the biological mechanism by which the T/ERG operates is yet to be determined. Using immortalized prostate epithelial cells (EP) model we were able to show that EP with the combination of androgen receptor(AR) and T/ERG(EP-AR T/ERG cell line) demonstrate an Epithelial to Mesenchymal Transition (EMT) manifested by a mesenchyme-like morphological appearance and behavior.
TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model.
Specimen part, Cell line
View SamplesHuman mononuclear cells were cultured in 2 phases. In the 1st phase the culture medium contained cyclosporine A the 2nd phase contained SCF and erythropoietin. Cells were collected at 3 stages of differentiation; on day 6, 10, 12 and represented early erythroblasts, medium stage and normoblasts.
Identification of gene networks associated with erythroid differentiation.
No sample metadata fields
View SamplesComparisons of global gene-expression profiles revealed a greater distinction between CD4+ Treg cells and CD4+ conventional (Tconv) T cells residing in abdominal (epidydimal) fat versus in more standard locations such as the spleen, thymus and LN.
Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters.
Specimen part
View SamplesHepatic lipid accumulation is an important complication of obesity linked to risk for type 2 diabetes. To identify novel transcriptional changes in human liver which could contribute to hepatic lipid accumulation and associated insulin resistance and type 2 diabetes (DM2), we evaluated gene expression and gene set enrichment in surgical liver biopsies from 13 obese (9 with DM2) and 5 control subjects, obtained in the fasting state at the time of elective abdominal surgery for obesity or cholecystectomy. RNA was isolated for cRNA preparation and hybridized to Affymetrix U133A microarrays.
Thyroid hormone-related regulation of gene expression in human fatty liver.
Sex, Age
View SamplesWe show that mesenchymal CSC-like cells express an embryonic stem cell signature that is mutant p53 dependent Overall design: Examination of three p53 mutant mesenchymal stem cells and ten derived CSC-like cell lines and 2 derived p53 mutant KO clones compared to control clones
A Mutant p53-Dependent Embryonic Stem Cell Gene Signature Is Associated with Augmented Tumorigenesis of Stem Cells.
Specimen part, Cell line, Subject
View SamplesA prevalent hypothesis for the cell-to-cell coordination of the phenomena of early development is that a defined mixture of different mRNA species at specific abundances in each cell determines fate and behavior. With this dataset we explore this hypothesis by quantifying the abundance of every mRNA species in every individual cell of the early C. elegans embryo, for which the exact life history and fate is precisely documented. Overall design: Embryos of the 1-, 2-, 4-, 8- and 16-cell stage were dissected into complete sets of single cells, and each cell from each set was sequenced individually using SMARTer technology. 5-9 replicates were generated for each stage. Most cell identities were unknown upon sequencing, but were deduced from by their transcriptomes post hoc.
A Transcriptional Lineage of the Early C. elegans Embryo.
Specimen part, Subject
View SamplesDuplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a key causal role in tumorigenesis. According to an alternative view, chromosomal instabilities are mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that deregulation of some key pathways, such as MAPK, p53, cell cycle regulation and Polycomb group factors, in addition to activation of several genes like Myc, AML, B-Catenin and the ETS family transcription factors, are key steps in cancer development driven by 20q amplification. Finally we identified 13 cancer initiating genes, located on 20q13, which were significantly overexpressed in many tumors, with expression levels correlated with tumor grade and outcome; these probably play key roles in inducing malignancy via20q amplification.
Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer.
Specimen part
View SamplesInsulin resistance in skeletal muscle is a key phenotype associated with type 2 diabetes (T2D) and is even present in offspring of diabetic parents. However, molecular mediators of insulin resistance remain unclear. We find that the top-ranking gene set in expression analysis of muscle from humans with T2D and normoglycemic insulin resistant subjects with parental family history (FH+) of T2D is increased expression of actin cytoskeleton genes regulated by serum response factor (SRF) and its coactivator MKL1. Furthermore, the SRF activator STARS is upregulated in FH+ and T2D and inversely correlated with insulin sensitivity. These patterns are recapitulated in insulin resistant mice, and linked to alterations in two other regulators of this pathway: reduced G-actin and increased nuclear localization of MKL1. Both genetic and pharmacologic manipulation of STARS/MKL1/SRF pathway significantly alter insulin action: 1) Overexpression of MKL1 or reduction in G-actin decreased insulin-stimulated Akt phosphorylation; 2) reduced STARS expression increased insulin signalling and glucose uptake, and 3) SRF inhibition by CCG-1423 reduced nuclear MKL1, improved glucose uptake, and improved glucose tolerance in insulin resistant mice in vivo. Thus, SRF pathway alterations are a signature of insulin resistance which may also contribute to T2D pathogenesis and be a novel therapeutic target.
Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance.
Sex, Age, Specimen part
View SamplesBranched-chain amino acids (BCAA) have emerged as predictors of type 2 diabetes (T2D). However, their potential role in the pathogenesis of insulin resistance and T2D remains unclear. By integrating data from skeletal muscle gene expression and metabolomic analyses, we demonstrate evidence for perturbation in BCAA metabolism and fatty acid oxidation in skeletal muscle from insulin-resistant humans. Experimental modulation of BCAA flux in cultured cells alters fatty acid oxidation in parallel. Furthermore, heterozygosity for the BCAA metabolic enzyme methylmalonyl-CoA mutase (MUT) alters muscle lipid metabolism in vivo, resulting in increased muscle triacylglycerol (TAG) accumulation and increased body weight after high-fat feeding. Together, our results demonstrate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by reducing fatty acid oxidation and increasing TAG accumulation.
Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.
Sex, Age, Specimen part, Treatment
View Samples