To identify the molecular mechanisms and environmental inducers contributing to reprogramming of hepatocytes into progenitors in HCC context, we used the HepaRG cell line as model.
Inflammatory cytokines promote the retrodifferentiation of tumor-derived hepatocyte-like cells to progenitor cells.
Cell line, Time
View SamplesThe relationships between cancer cells and the microenvironment play a critical role in cancer growth and development. The bone stroma consists of mesenchymal stem cells (MSCs) and mature osteoblasts that promote cancer growth. Yet it is not completely understood what are the molecular processes guiding cancer cells progression to the bone. In this study, a co-culture assay and subsequent gene profiling arrays were used to compare the gene expression profile of a pre-osteoblastic cell line (MBA-15) with that of a mammary adenocarcinoma (DA3) cells. Following co-culture, cells were separated by magnetic beads based on the expression of CD326 antigen. RNA was purified and hybridized on gene expression array. The gene expression pattern changes were followed by qRT-PCR. We demonstrate that co-cultured DA3 cells express elevated levels of genes that regulate growth and responses to both hormonal stimulus and wounding, as well as reduced expression of genes related to lipid metabolism. Also, co-cultured pre-osteoblastic cells showed reduced expression of cell-junction genes. The study presents a simplified model system, composed of pre-osteoblastic and mammary cancer cells, that potentially mimics the molecular interactions in the tumor microenvironment which contribute to tumor-progression.
Molecular profiling of functional interactions between pre-osteoblastic and breast carcinoma cells.
Specimen part, Cell line
View SamplesThe global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can act both as an enhancer and as a silencer of splicing, and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by Heterochromatin protein 1 (HP1), which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene, and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene’s alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation''s significant global influence on mRNA splicing, and identify a specific mechanism of splicing regulation mediated by HP1. Overall design: BS-seq on WT mouse ES cells (2 replicates), MNase-seq on WT and TKO cells (3 replicates), mRNA-seq on WT and TKO cells as well as HP1 knock-down cells (2 replicates for each sample)
HP1 is involved in regulating the global impact of DNA methylation on alternative splicing.
No sample metadata fields
View SamplesCytotoxic T cells confer a prognostic benefit in many tumors, including ovarian cancer. We and others have previously identified a subset of CD8+ T cells, namely CD103+CD8+ T cells, that seems to have a better prognostic effect. The aim of this study is to identify how these CD103+ T cells differ from CD103-CD8+ T cells on mRNA level in human samples of ovarian cancer. Overall design: mRNA profiles of 10 pools of 20 cells CD103+CD8+, 10 pools of 20 cells CD103-CD8+, 20 single-cells CD103+CD8+, 20 single-cells CD103-CD8+ were generated from TILs of 3 ovarian cancers (high-grade serous ovarian cancer) by SMARTseq2
A Transcriptionally Distinct CXCL13<sup>+</sup>CD103<sup>+</sup>CD8<sup>+</sup> T-cell Population Is Associated with B-cell Recruitment and Neoantigen Load in Human Cancer.
Subject
View SamplesThe sexually dimorphic expression of genes across 26 somatic rat tissues was using Affymetrix RAE-230 genechips. We considered probesets to be sexually dimorphically expressed (SDE) if they were measurably expressed above background in at least one sex, there was at least a two-fold difference in expression (dimorphism) between the sexes, and the differences were statistically significant after correcting for false discovery. 14.5% of expressed probesets were SDE in at least one tissue, with higher expression nearly twice as prevalent in males compared to females. Most were SDE in a single tissue. Surprisingly, nearly half of the probesets that were (SDE) in multiple tissues were oppositely sex biased in different tissues, and most SDE probesets were also expressed without sex bias in other tissues. Two genes were widely SDE: Xist (female-only) and Eif2s3y (male-only). The frequency of SDE probesets varied widely between tissues, and was highest in the duodenum (6.2%), whilst less than 0.05% in over half of the surveyed tissues. The occurrence of SDE probesets was not strongly correlated between tissues. Within individual tissues, however, relational networks of SDE genes were identified. In the liver, networks relating to differential metabolism between the sexes were seen. The estrogen receptor was implicated in differential gene expression in the duodenum. To conclude, sexually dimorphic gene expression is common, but highly tissue-dependent. Sexually dimorphic gene expression may provide insights into mechanisms underlying phenotypic sex differences.
The incidence of sexually dimorphic gene expression varies greatly between tissues in the rat.
Sex, Specimen part
View SamplesOutbred D.melanogaster populations subjected to >300 generations of natural selection on either control, or 12% ethanol, or variable food (2 replicates each) and exposed, as first instar larvae, to either water control or 12% ethanol.
Evolution of gene expression and expression plasticity in long-term experimental populations of Drosophila melanogaster maintained under constant and variable ethanol stress.
No sample metadata fields
View SamplesRoom temperature whole blood mRNA stabilization procedures, such as the PAX gene system, are critical for the application of transcriptional analysis to population-based clinical studies. Global transcriptome analysis of whole blood RNA using microarrays has proven to be challenging due to the high abundance of globin transcripts that constitute 70% of whole blood mRNA in the blood. This is a particular problem in patients with sickle-cell disease, secondary to the high abundance of globin-expressing nucleated red blood cells and reticulocytes in the circulation . In order to more accurately measure the steady state whole blood transcriptome in sickle-cell patients, we evaluated the efficacy of reducing globin transcripts in PAXgene stabilized RNA samples for genome-wide transcriptome analyses using oligonucleotide arrays. We demonstrate here by both microarrays and Q-PCR that the globin mRNA depletion method resulted in 55-65 fold reduction in globin transcripts in whole blood collected from healthy volunteers and sickle-cell disease patients. This led to an improvement in microarray data quality with increased detection rate of expressed genes and improved overlap with the expression signatures of isolated peripheral blood mononuclear (PBMC) preparations. The differentially modulated genes from the globin depleted samples had a higher correlation coefficient to the 112 genes identified to be significantly altered in our previous study on sickle-cell disease using PBMC preparations. Additionally, the analysis of differences between the whole blood transcriptome and PBMC transcriptome reveals important erythrocyte genes that participate in sickle-cell pathogenesis and compensation. The combination of globin mRNA reduction after whole-blood RNA stabilization represents a robust clinical research methodology for the discovery of biomarkers for hematologic diseases and in multicenter clinical trials investigating a wide range of nonhematologic disorders where fractionation of cell types is impracticable.
Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease.
Specimen part, Subject
View SamplesThere is growing evidence from epidemiological and experimental studies suggesting that early life exposure to environmental chemicals can have long-term consequences that are seen in adults and not apparent early in life. We recently demonstrated that developmental exposure of zebrafish embryos to low, non-embryotoxic levels of PCB126 did not affect larval behavior but caused changes in adult behavior (Glazer et al., 2016, NeuroToxicology 52:134-143). Zebrafish embryos were exposed to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2 nM) for 20 h (4–24 h post fertilization), and then reared to adulthood in clean water. Locomotor activity of the larvae at 7 and 14 days post fertilization (dpf) was not affected by PCB126. In contrast, adult fish (4 months old) tested in novel tank and shoaling assays showed impaired habituation to a novel environment. In order to investigate the underlying molecular basis of these phenotypes, we determined the transcriptional profiles in whole embryos (48 hpf), larvae (5 dpf) and adult brain (4 mo) using strand-specific RNA-sequencing. Our results show that 0.3 nM PCB126 exposure induced cyp1a transcript levels 12.5-fold in 48-hpf embryos but there was no induction in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor during early development. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, we observed significant changes in gene expression profiles in the adult brain samples. A total of 2209 and 1628 genes were differentially expressed in 0.3 nM and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analysis of differentially expressed genes in the brain suggest enrichment of genes involved in oxidative phosphorylation, neurodegenerative diseases, circadian rhythm and calcium signaling pathways. We are currently investigating the role of these genes in altered behavior observed in the adults. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns. [Funded by NIH P01ES021923 and NSF OCE-1314642]. Overall design: A total of 24 samples were sequenced. It includes 3 different time points and 2 or 3 different treatments. Each treatment had 3 biological replicates.
Early Life Exposure to Low Levels of AHR Agonist PCB126 (3,3',4,4',5-Pentachlorobiphenyl) Reprograms Gene Expression in Adult Brain.
No sample metadata fields
View SamplesPurpose: identify sites in endogenous mRNAs that are cut by KSHV SOX; Method: parallel analysis of RNA ends (PARE, following Zhai et al., 2014); Results: SOX cuts at discrete locations in mRNAs Overall design: human Xrn1 was knocked down in HEK293T cells by shRNAs or siRNAs to stabilize degradation fragments with free 5'' ends; GFP-SOX or GFP were transfected for ~24 hrs; total RNA samples were collected and subjected to PARE protocol (Zhai et al., 2014)
Transcriptome-Wide Cleavage Site Mapping on Cellular mRNAs Reveals Features Underlying Sequence-Specific Cleavage by the Viral Ribonuclease SOX.
No sample metadata fields
View SamplesGene expression along the crypt-villus (C-V) axis was analyzed using cryostat sectioning to isolate fractions representing the crypts (bottom) and villus tops (top). These fractions were used for analyzing gene expression in iron replete Wistar rats (++), iron deficient Wistar rats (low iron), and in iron deficient Wistar rats fed iron for 3 and 6 days (iron-fed). Differences were observed between the crypts and villus tops in the expression of genes associated with Wnt and BNP signaling, cell proliferation and apoptosis, lipid and iron transport and metabolism. Gene expression in villus crypts and tops was also compared between Wistar and Belgrade rats (bb) and Belgrade rats fed iron (iron-fed) particularly as related to iron absorption and metabolism to define the affects of the mutation in DMT1 in the Belgrade rat on the expression of genes related to iron absorption and metabolism and the response to iron feeding.
Hypoxia-inducible factor-2α and iron absorptive gene expression in Belgrade rat intestine.
No sample metadata fields
View Samples