Nitric oxide being a versatile molecule inside biological systems, from being both a cell signaling molecule to a potent stress agent, has significant effect in the transcriptional response in fission yeast.
Global transcriptomic profiling of Schizosaccharomyces pombe in response to nitrosative stress.
No sample metadata fields
View SamplesSound vibration (SV) causes various developmental and physiological changes in plants. It strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signaling in plants. However, the underlying molecular mechanism of SV-mediated plant responses remains elusive. Herein, we investigated the transcript changes in Arabidopsis thaliana upon five different single frequencies of SV treatment.
Plant acoustics: in the search of a sound mechanism for sound signaling in plants.
Age, Specimen part
View Samplesidentification of differentially expressed genes in gas6 homozygous mutant hindbrain when compared to wildtype hindbrain in zebrafish Overall design: Total RNA was extracted from dissected hindbrain of gas6 homzygous mutants and wildtype embryos at 48hpf using the RNeasy Mini Kit (Qiagen). Three libraries from wildtype embryos and three libraries from gas6 mutants were then generated from 3mg RNA using the TruSeq Stranded mRNA Library Prep Kit (Illumina). All libraries were analyzed for quality on a bioanalyzer prior to sequencing (Agilent 2100 BioAnalyzer).
Analysis of novel caudal hindbrain genes reveals different regulatory logic for gene expression in rhombomere 4 versus 5/6 in embryonic zebrafish.
Specimen part, Subject
View SamplesDiscriminating pathogenic bacteria from energy-harvesting commensals is key to host immunity. Using mutants defective in the enzymes of O-linked N-acetylglucosamine (O-GlcNAc) cycling, we examined the role of this nutrient-sensing pathway in the Caenorhabidits elegans innate immune response. Using whole genome transcriptional profiling, O-GlcNAc cycling mutants exhibited deregulation of unique stress- and immune-responsive genes as well as genes shared with the p38 MAPK/PMK-1 pathway. Moreover, genetic analysis showed that deletion of O-GlcNAc transferase (ogt-1) yielded animals hypersensitive to the human pathogen S. aureus but not to P. aeruginosa. Genetic interaction studies further revealed that nutrient-responsive OGT-1 acts through the conserved -catenin (BAR-1) pathway and in concert with p38 MAPK/PMK-1 to modulate the immune response to S. aureus. The participation of the nutrient sensor O-GlcNAc transferase in an immunity module conserved from C. elegans to humans reveals an unexplored nexus between nutrient availability and a pathogen-specific immune response.
Conserved nutrient sensor O-GlcNAc transferase is integral to C. elegans pathogen-specific immunity.
Treatment
View SamplesEscherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) alleviates diauxic effects in E. coli and enables co-utilization of glucose and other sugars. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression.
Transcriptional effects of CRP* expression in Escherichia coli.
No sample metadata fields
View SamplesSickle cell disease is characterized by hemolysis, vaso-occlusion and ischemia reperfusion injury. These events cause endothelial dysfunction and vasculopathies in multiple systems
Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes.
Specimen part, Treatment, Subject
View SamplesOver expression of recombinant proteins is known to cause a metabolic burden to the host cells which leads to down regulation of both growth rates and protein expression. Most studies in this regard have been conducted in low density shake flask cultures which does not capture the essential features of an industrial scale bioprocess. In the present work we studied the transcriptomic profiling at different specific growth rates while expressing the recombinant human interferon beta in fed batch cultures with complex media. These conditions mimicked the industrial fermentations for recombinant proteins.
Comparative transcriptomic profile analysis of fed-batch cultures expressing different recombinant proteins in Escherichia coli.
No sample metadata fields
View SamplesThe objective of this work was to design an improved host platform for recombinant protein expression in E. coli. The approach involves first to create a library of the E. coli genomic DNA in different expression vectors and screen for probable transcripts which may lead to slow growing colonies and also simultaneously over-expression of recombinant proteins. To observe its effect on host performance, these genes were knocked out from the E. coli genome. A CG2 strain has been created by knocking in vhb gene gene downstream of the acetate promoter and knocking down ribB gene in DH5 and transformed with Recombinant GFP cloned in pBAD33.
Comparative transcriptomic profile analysis of fed-batch cultures expressing different recombinant proteins in Escherichia coli.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells.
Specimen part, Cell line, Time
View Samples