Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserve self-tolerance and prevent chronic inflammation and autoimmune pathologies. However the diverse array of phagocytes residing within different tissues combined with the necessarily prompt nature of apoptotic cell clearance has made it difficult to study this process in situ. Thus, the full spectrum of functions executed by tissue resident phagocytes in response to homeostatic apoptosis remains unclear.
Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs.
Sex, Specimen part
View SamplesTissue morphogenesis relies on proper differentiation of morphogenetic domains, adopting specific cell behaviours. Yet, how signalling pathways interact to determine and coordinate these domains remains poorly understood. Dorsal closure (DC) of the Drosophila embryo represents a powerful model to study epithelial cell sheet sealing. In this process, JNK (JUN N-terminal Kinase) signalling controls leading edge (LE) differentiation generating local forces and cell shape changes essential for DC. The LE represents a key morphogenetic domain in which, in addition to JNK, a number of signalling pathways converges and interacts (anterior/posterior -AP- determination; segmentation genes, such as Wnt/Wingless; TGF/Decapentaplegic). To better characterize properties of the LE morphogenetic domain, we used microarrays to identify genes whose expression is regulated by the JNK pathway during dorsal closure of the Drosophila embryo.
The Drosophila serine protease homologue Scarface regulates JNK signalling in a negative-feedback loop during epithelial morphogenesis.
Specimen part
View SamplesTranscriptome analysis of human peripheral blood T cells
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
Sex, Specimen part, Time
View SamplesTranscriptome analysis of human peripheral blood monocytes
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
Sex, Specimen part, Subject, Time
View SamplesOncogene-induced DNA methylation-mediated transcriptional silencing of tumor suppressors frequently occurs in cancer, but the mechanism and functional role of this silencing in oncogenesis is not fully understood. Here, we show that oncogenic epidermal growth factor receptor (EGFR) induces silencing of multiple unrelated tumor suppressors in lung adenocarcinomas and glioblastomas by inhibiting DNA demethylase TET oncogene family member 1 (TET1) via the C/EBP transcription factor. After oncogenic EGFR inhibition, TET1 binds to tumor suppressor promoters and induces their re-expression via active DNA demethylation. Ectopic expression of TET1 potently inhibits lung and glioblastoma tumor growth, and TET1 knockdown confers resistance to EGFR inhibitors in lung cancer cells. Lung cancer samples exhibited reduced TET1 expression or TET1 cytoplasmic localization in a majority of cases. Collectively, these results identify a conserved pathway of oncogenic EGFR-induced DNA methylation-mediated transcriptional silencing of tumor suppressors, which may have therapeutic benefit for oncogenic EGFR-mediated lung cancers and glioblastomas.
Oncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells.
Cell line
View SamplesMicroarray analysis of gene expression in the olfactory epithelium of Harlequin mouse as a model of oxidative-stress induced neurodegeneration of olfactory sensory neurons
Cellular and molecular characterization of oxidative stress in olfactory epithelium of Harlequin mutant mouse.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium.
Sex, Age, Race
View SamplesmRNA expression was assayed from bronchial epithelial cells collected via bronchoscopy from healthy current and never smoker volunteers in order to determine relationships between microRNA and mRNA expression in bronchial epithelial cell samples across current and never smokers and within the same individual.
MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium.
Sex, Age, Race
View SamplesAged humans and rodents are susceptible to infection with Streptococcus pneumoniae bacteria as a result of an inability to make antibodies to capsular polysaccharides. This is partly a result of decreased production of proinflammatory cytokines and increased production of interleukin (IL)-10 by macrophages (Mphi) from aged mice. To understand the molecular basis of cytokine dysregulation in aged mouse Mphi, a microarray analysis was performed on RNA from resting and lipopolysaccharide (LPS)-stimulated Mphi from aged and control mice using the Affymetrix Mouse Genome 430 2.0 gene chip. Two-way ANOVA analysis demonstrated that at an overall P < 0.01 level, 853 genes were regulated by LPS (169 in only the young, 184 in only the aged, and 500 in both). Expression analysis of systematic explorer revealed that immune response (proinflammatory chemokines, cytokines, and their receptors) and signal transduction genes were specifically reduced in aged mouse Mphi. Accordingly, expression of Il1 and Il6 was reduced, and Il10 was increased, confirming our previous results. There was also decreased expression of interferon-gamma. Genes in the Toll-like receptor-signaling pathway leading to nuclear factor-kappaB activation were also down-regulated but IL-1 receptor-associated kinase 3, a negative regulator of this pathway, was increased in aged mice. An increase in expression of the gene for p38 mitogen-activated protein kinase (MAPK) was observed with a corresponding increase in protein expression and enzyme activity confirmed by Western blotting. Low doses of a p38 MAPK inhibitor (SB203580) enhanced proinflammatory cytokine production by Mphi and reduced IL-10 levels, indicating that increased p38 MAPK activity has a role in cytokine dysregulation in the aged mouse Mphi.
Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages.
Specimen part
View SamplesThe objective of this study was to characterise a small panel of differentially expressed genes in the muscle that could be utilised to authenticate animals raised on pasture versus animals raised indoors on a concentrate based diet.
The application of transcriptomic data in the authentication of beef derived from contrasting production systems.
Specimen part
View Samples