We study the effect of nitrogen limitation on the growth and development of poplar roots. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes driven by low nitrogen in the growth media. We report the effect of nitrogen limitation on the growth and development of poplar roots. Low nitrogen concentration led to increased root elongation followed by lateral root proliferation and finally increased root biomass. These morphological responses correlated with high and specific activation of genes encoding regulators of cell cycle and enzymes involved in cell wall biogenesis, growth and remodeling. Comparative analysis of poplar and Arabidopsis root transcriptomes under nitrogen deficiency indicated many similarities and diversification in the response in the two species. A reconstruction of genetic regulatory network (GRN) analysis revealed a sub-network centered on a PtaNAC1-like transcription factor. Consistent with the GRN predictions, root-specific upregulation of PtaNAC1 in transgenic poplar plants increased root biomass and led to significant changes in the expression of the connected genes specifically under low nitrogen. PtaNAC1 and its regulatory miR164 showed inverse expression profiles during response to LN, suggesting of a micro RNA mediated attenuation of PtaNAC1 transcript abundance in response to nitrogen deprivation.
Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks.
Specimen part, Treatment, Time
View SamplesNotch receptors direct the differentiation of T helper (Th) cell subsets, but their influence on regulatory T (TR) cell responses is obscure. Interruption of Notch signaling in TR cells resulted in a super-regulatory phenotype, with suppression of TR cell Th1 programming and apoptosis as well as Th1 cell responses in systemic inflammation. In contrast, gain of function Notch1 signaling in TR cells resulted in lymphoproliferation, dysregulated Th1 responses and autoimmunity. To determine mechanisms by which Notch signaling may alter TR cell function, we compared the transcriptional profiles of splenic TR cells of Foxp3EGFPCre mice with those of Foxp3EGFPCreR26N1c/N1c (gain of function Notch signaling), Foxp3EGFPCreRBPJ/ (loss of function canonical Notch signaling), and Foxp3EGFPCreR26N1c/N1cRBPJ/ mice (gain of function/canonical loss of function Notch signaling).
Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability.
Specimen part
View SamplesIntegrative regulatory mapping indicates that the RNA-binding protein HuR (ELAVL1) couples pre-mRNA processing and mRNA stability
Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart.
Sex, Treatment
View SamplesFatty acids comprise the primary energy source for the heart and are mainly taken up via hydrolysis of circulating triglyceride-rich lipoproteins. While most of the fatty acids entering the cardiomyocyte are oxidized, a small portion is involved in altering gene transcription to modulate cardiometabolic functions. So far, no in vivo model has been developed enabling study of the transcriptional effects of specific fatty acids in the intact heart. In the present study, mice were given a single oral dose of synthetic triglycerides composed of one single fatty acid. Hearts were collected 6h thereafter and used for whole genome gene expression profiling. Experiments were conducted in wild-type and PPAR/ mice to allow exploration of the specific contribution of PPAR. It was found that: 1) linolenic acid (C18:3) had the most pronounced effect on cardiac gene expression. 2) The largest similarity in gene regulation was observed between linoleic acid (C18:2) and C18:3. Large similarity was also observed between the synthetic PPAR agonist Wy14643 and docosahexaenoic acid (C22:6). 3) Many genes were regulated by one particular treatment only. Genes regulated by one particular treatment showed large functional divergence. 4) The majority of genes responding to fatty acid treatment were regulated in a PPAR-dependent manner, emphasizing the importance of PPAR in mediating transcriptional regulation by fatty acids in the heart. 5) Several genes were robustly regulated by all or many of the fatty acids studied, mostly representing well-described targets of PPARs (e.g. Acot1, Angptl4, Ucp3). 6) Deletion and activation of PPAR had a major effect on expression of numerous genes involved in metabolism and immunity. Our analysis demonstrates the marked impact of dietary fatty acids on gene regulation in the heart via PPAR.
Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart.
Sex, Treatment
View SamplesInduced Treg (iTreg) cells are essential for tolerance and can be used therapeutically, yet their stability in vivo and mechanisms of suppression are unresolved. Here, we used a treatment model of colitis to examine the role of autologous IL-10 in iTreg cell function. Mice treated with IL-10+/+ iTreg cells in combination with IL-10/ natural Treg (nTreg) cells survived and gained weight, even though iTreg cells were numerically disadvantaged and comprised just ~20% of all Treg cells in treated mice. Notably, ~85% of the transferred iTreg cells lost Foxp3 expression (ex-iTreg) but retained a portion of the iTreg transcriptome which failed to limit their pathogenic potential. The TCR repertoires of iTreg and ex-iTreg cells exhibited almost no overlap, which indicates that the two populations are clonally unrelated and maintained by different selective pressures. These data demonstrate a potent and critical role for iTreg cell produced IL-10 that can supplant the IL-10 produced by nTreg cells and compensate for the inherent instability of the iTreg population.
IL-10 produced by induced regulatory T cells (iTregs) controls colitis and pathogenic ex-iTregs during immunotherapy.
Treatment
View SamplesFetal spleens were collected at days 82 and 97 of gestation following maternal infection with BVDV on day 75 of gestation.
Attenuated lymphocyte activation leads to the development of immunotolerance in bovine fetuses persistently infected with bovine viral diarrhea virus†.
Sex, Specimen part
View SamplesInflammation plays a central role in many human diseases. Human parturition also resembles an inflammatory reaction, where progesterone (P4) and progesterone receptors (PRs) have already been demonstrated to suppress contraction-associated gene expression. In our previous studies, we have found that the progesterone actions, including progesterone-induced gene expression and progesterones anti-inflammatory effect, are mediated by PR, GR or both.
Progesterone and the Repression of Myometrial Inflammation: The Roles of MKP-1 and the AP-1 System.
Specimen part, Subject
View SamplesCirculating progesterone (P4) levels decline before the onset of parturition in most animals, but not in humans. This has led to the suggestion that there is functional withdrawal of P4 action at the myometrial level prior to labor onset. Mifepristone is widely used to induce human labour
The study of progesterone action in human myometrial explants.
Specimen part, Disease
View Samples