This SuperSeries is composed of the SubSeries listed below.
KAP1 regulates gene networks controlling T-cell development and responsiveness.
Specimen part
View SamplesThe modulation of chromatin status at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by KAP1, the universal cofactor of KRAB-containing Zinc Finger Proteins (KRAB-ZFPs), a tetrapod-restricted family of transcriptional repressors. T cell-specific Kap1 knockout mice displayed a significant expansion of immature thymocytes and imbalances in the ratios of mature T cells in the thymus and the spleen, with impaired responses to TCR stimulation. Transcriptome and chromatin studies revealed that KAP1 directly controls the expression of a number of genes involved in TCR and cytokine signalling, among which Traf1 and FoxO1, and is strongly associated with cis-acting regulatory elements marked by the H3K9me3 repressive mark on the genome of thymic T cells. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB/ZFPs are selectively expressed in T lymphoid cells. These results reveal the so far unsuspected yet important role of KRAB/KAP1-mediated epigenetic regulation in T lymphocyte differentiation and activation.
KAP1 regulates gene networks controlling T-cell development and responsiveness.
No sample metadata fields
View SamplesThe goal of this study is to identify, in the head of adult flies, mRNA species whose expresson level are altered by overexpression of the Drosophila RNA-binding protein LARK in CNS neurons.
The LARK RNA-binding protein selectively regulates the circadian eclosion rhythm by controlling E74 protein expression.
No sample metadata fields
View SamplesCircadian behaviors are regulated by intrinsic biological clocks consisting of central molecular oscillators and output pathways. Despite significant progress in elucidating the central timekeeping mechanisms, the molecular pathways coupling the circadian pacemaker to overt rhythmic behavior and physiology remain elusive. The Drosophila LARK RNA-binding protein is a candidate for such a coupling factor. Previous research indicates that LARK functions downstream of the clock to mediate behavioral outputs. To better understand the roles of LARK in the Drosophila circadian system, we sought to identify RNA molecules associated with LARK in vivo, using a novel strategy that involves capturing the RNA ligands by immunoprecipitation, visualizing the captured RNAs using whole gene microarrays, and identifying functionally relevant targets through genetic screens.
The LARK RNA-binding protein selectively regulates the circadian eclosion rhythm by controlling E74 protein expression.
No sample metadata fields
View SamplesGenome-wide gene expression was obtained in three auditory brainstem nuclei (defined below), at two different ages in mice, postnatal day (P)3 and P14. The primary aim was to identify genes which are differentially expressed between the medial nucleus of the trapezoid body (MNTB) and the superior olive (LSO), at both age groups.
BMP signaling specifies the development of a large and fast CNS synapse.
Sex, Specimen part
View SamplesLittle is known about the pan-microvascular transcriptome, particularly considering gene transcripts and their encoded proteins that can be considered as vascular-selective in their expression.
Identification of a core set of 58 gene transcripts with broad and specific expression in the microvasculature.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.
Sex, Age, Specimen part, Disease
View SamplesGene expression profiling of liver biopsies collected from 33 healthy liver donors ranging from 13 to 90 years old. The Affymetrix HG-U133 Plus 2.0 GeneChip platform was used to evaluate gene-expression.
Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.
Sex, Age, Specimen part, Disease
View SamplesGene-expression microarray datasets generated as part of the Immunological Genome Project (ImmGen). Primary cells from multiple immune lineages are isolated ex-vivo, primarily from young adult B6 male mice, and double-sorted to >99% purity. RNA is extracted from cells in a centralized manner, amplified and hybridized to Affymetrix 1.0 ST MuGene arrays. Protocols are rigorously standardized for all sorting and RNA preparation. Data is released monthly in batches of cell populations.
Transcriptomes of the B and T lineages compared by multiplatform microarray profiling.
Sex, Age
View SamplesThe pathogenic mechanisms of common kidney glomerular diseases, including the vast majority of cases of proteinuria, remain unknown.
Glomerular transcriptome changes associated with lipopolysaccharide-induced proteinuria.
No sample metadata fields
View Samples