Purpose: The goal of the present study is to provide an independent assessment of the retinal transcriptome signatures of the C57BL/6J (B6) and DBA/2J (D2) mice and to enhance existing microarray datasets for accurately defining the allelic differences in the BXD recombinant inbred strains. Methods: Retinas from both B6 and D2 mice (3 of each) were used for the RNA-seq analysis. Transcriptome features were examined for both strains. Differentially expressed genes between the 2 strains were identified and bioinformatic analysis was performed to analyze the transcriptome differences between B6 and D2 strains, including Gene ontology (GO) analysis, Phenotype and Reactome enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The RNA-seq data were then directly compared with one of the microarray datasets (DoD Retina Normal Affy MoGene 2.0 ST RMA Gene Level Microarray Database) hosted on GeneNetwork (www.genenetwork.org). Results: RNA-seq provided an in-depth analysis of the transcriptome of the B6 and D2 retina with a total of more than 30,000,000 reads per sample. Over 70% of the reads were uniquely mapped, resulting in a total of 18,100 gene counts for all 6 samples. 1,665 genes were differentially expressed, with 858 of these more highly expressed in B6 and 807 more highly expressed in D2. Several molecular pathways were differentially active between the two strains, including the retinoic acid metabolic process, endoplasmic reticulum lumen, extracellular matrix organization, and PI3K-Akt signaling pathway. The most enriched KEGG pathways were the pentose and glucuronate interconversions pathway, the cytochrome P450 pathway, protein digestion and absorption pathway and the ECM-receptor interaction pathway. Each of these pathways had a more than 4-fold enrichment. The DoD normal retina microarray database provided expression profiling for 26,191 annotated transcripts for B6 mouse, D2 mouse and 53 BXD strains. A total of 13,793 genes in this microarray dataset were comparable to the RNA-seq dataset. For both B6 and D2, the RNA-seq data and microarray data were highly correlated with each other (Pearson's r = 0.780 for B6 and 0.784 for D2). Our results suggest that the microarray dataset can reliably detect differentially expressed genes between the B6 and D2 retinas, with a positive predictive value of 45.6%, and a negative predictive value of 93.6%. Examples of true positive and false positive genes are provided. Conclusions: Retinal transcriptome features of B6 and D2 mouse strains provide a useful reference for a better understanding of the mouse retina. Generally, the microarray database presented on GeneNetwork shows good agreement with the RNA-seq data, while we note that any allelic difference between B6 and D2 should be verified with the latter. Overall design: Retinal mRNA profiles of 2 strains of mice, C57BL/6J and DBA/2J, were generated by deep sequencing, in triplicate, using Illumina TruSeq Stranded Total RNA kit.
RNA sequencing profiling of the retina in C57BL/6J and DBA/2J mice: Enhancing the retinal microarray data sets from GeneNetwork.
Specimen part, Cell line, Subject
View SamplesThe objective of the present investigation was to utilize the GeneChip Porcine Genome Array from Affymetrix possessing 20, 201 unique probe sets to identify differentially expressed genes during rapid trophoblastic elongation and attachment to the uterine surface in the pig. Identification and characterization of conceptus gene expression patterns during rapid trophoblastic elongation and attachment in the pig will provide a better understanding of the events required for successful implantation and embryonic survival.
Identification of differential gene expression during porcine conceptus rapid trophoblastic elongation and attachment to uterine luminal epithelium.
No sample metadata fields
View SamplesPlacentation of the conceptus to the surface epithelium is governed through a tightly regulated temporal and spatial window. Premature exogenous steriod exposure causes a shift in the maternal tissue's receptivity and prevents proper placentation.
Effects of aberrant estrogen on the endometrial transcriptional profile in pigs.
Specimen part
View SamplesA robust set of CNS transcript changes was defined by comparing microarray data that describe the injury response of the rat retina [Vazquez-Chona et al., IOVS 2004; GSE1001], brain [Matzilevich et al., J Neurosci Res 2002; GSE1911], and spinal cord [Di Giovanni et al., Ann Neurol 2003; GDS63]. We determined the CNS injury genes that were expressed in cultured astrocytes from rat cortex [GSM34300] and from human optic nerve head [Yang et al., Physiol Genomics 2004; GDS532].
Genetic networks controlling retinal injury.
No sample metadata fields
View SamplesMorbidity and mortality associated with retinoblastoma have decreased drastically in recent decades, in large part due to better prediction of high-risk disease and appropriate treatment stratification. High-risk histopathologic features and severe anaplasia both predict the need for more aggressive treatment; however, not all centers are able to easily assess tumor samples for degree of anaplasia. Instead, identification of genetic signatures able to distinguish among anaplastic grades and thus predict high versus low risk retinoblastoma would facilitate appropriate risk stratification in a wider patient population. A better understanding of genes dysregulated in anaplasia would also yield valuable insights into pathways underlying the development of more severe retinoblastoma. Here, we present the histopathologic and gene expression analysis of 28 retinoblastoma cases using microarray analysis. Tumors of differing anaplastic grade show clear differential gene expression, with significant dysregulation of unique genes and pathways in severe anaplasia. Photoreceptor and nucleoporin expression in particular are identified as highly dysregulated in severe anaplasia and suggest particular cellular processes contributing to the development of increased retinoblastoma severity. A limited set of highly differentially expressed genes are also able to accurately predict severe anaplasia in our dataset. Together, these data contribute to the understanding of the development of anaplasia and facilitate the identification of genetic markers of high-risk retinoblastoma.
Distinct Gene Expression Profiles Define Anaplastic Grade in Retinoblastoma.
Specimen part
View SamplesWe performed RNA-seq analysis of WT and blmp-1(tm548) mutant L3 larvae to identify genes regulated by the zing-finger transcription factor BLMP-1. Overall design: We analyzed three WT and three blmp-1 mutant biological replicates
DRE-1/FBXO11-dependent degradation of BLMP-1/BLIMP-1 governs C. elegans developmental timing and maturation.
Cell line, Subject
View SamplesSulforaphane (SFN), an isothiocyanate, is part of an important group of naturally occurring small molecules with antiinflammatory properties. Even though the published reports are vague, most are best conceivable with an inhibition of T cell functions. We therefore analyzed the effect of SFN on T cell-mediated autoimmune disease. Feeding mice with SFN protected from severe experimental autoimmune encephalomyelitis (EAE). Disease amelioration was associated with reduced interleukin (IL)-17 and IFN-gamma expression in draining lymph nodes. In vitro, SFN treatment of T cells did not directly alter T cell cytokine secretion. In contrast, SFN treatment of dendritic cells (DC) inhibited TLR4-induced IL-12 and IL-23 production and the cytokine profile of T cells stimulated by SFN-treated DC. SFN suppressed TLR4-induced nuclear factor kappa B (NFB) activity, without affecting the degradation of its inhibitor (IB). Instead, SFN treatment of DC resulted in strong expression of the stress response protein heme oxygenase-1 (HO-1), which interacts with NFB p65 and inhibits its activity. Consistent with these findings, HO-1 bound to p65 and subsequently inhibited the p65 promoter activity within the IL23a and IL12b promoter region. Importantly, SFN suppressed Il23a and Il12b expression in vivo and silenced Th17/Th1 responses within the CNS . Our data show that SFN improves Th17/Th1-mediated autoimmune disease by inducing HO-1 and inhibiting p65-regulated IL-23 and IL-12 expression.
Sulforaphane protects from T cell-mediated autoimmune disease by inhibition of IL-23 and IL-12 in dendritic cells.
Specimen part, Treatment
View SamplesAmputation of heart tissue followed by regeneration of the heart. Samples were taken at 0 hpa (hours post-amputation), 6 hpa, 12 hpa, 24 hpa, 3 dpa and 5 dpa.
Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration.
Specimen part, Time
View SamplesWe used NEBNext Ultra Directional RNA Library Prep Kits to prepare RNA-seq libraries of total RNA from hnRNP A2/B1 and A1 depleted A549 cells. Pro-seq libraries were prepared from A549 cells using Illumina adapters Overall design: hnRNP A2/B1 and A1 depleted A549 cells were generated by lentiviral infections of shRNA constructs. RNAs were isolated using Trizol.
A widespread sequence-specific mRNA decay pathway mediated by hnRNPs A1 and A2/B1.
No sample metadata fields
View SamplesmRNA expression was assayed from T47D SCR and T47D EGLN2 conditional knock down cell lines in order to profile the gene expression pattern regulated by EGLN2.
Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase.
Specimen part, Cell line
View Samples