Single O-GlcNAc modification orchestrate by O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA alias MGEA5) enzymes, affects signal transduction and gene expression by chromatin modulation. We developed Oga deleted MEF (mouse embryonic fibroblast) cells to investigate effects of O-GlcNAc modification in mice. RNA isolated from Mouse Embryonic Fibroblast cells generated from Oga Knock out (KO) Heterozygous (Het) and wild type (WT) cells and subjected to microarray analysis.
Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis.
Sex, Specimen part
View SamplesPPARg and C/EBPa cooperate to control preadipocyte differentiation (adipogenesis). However, the factors that regulate PPARg and C/EBPa expression during adipogenesis remain largely unclear. Here we show PTIP, a protein that associates with histone H3K4 methyltransferases, regulates PPARg and C/EBPa expression in mouse embryonic fibroblasts (MEFs) and during preadipocyte differentiation. PTIP deletion in MEFs leads to marked decreases of PPARg expression and PPARg-stimulated C/EBP expression. Further, PTIP is essential for induction of PPARg and C/EBPa expression during preadipocyte differentiation. Deletion of PTIP impairs the enrichment of H3K4 trimethylation and RNA polymerase II on PPARg and C/EBPa promoters. Accordingly, PTIP-/- MEFs and preadipocytes all show striking defects in adipogenesis. Furthermore, rescue of the adipogenesis defect in PTIP-/- MEFs requires co-expression of PPARg and C/EBPa. Finally, deletion of PTIP in brown adipose tissue significantly reduces tissue weight in mice. Thus, by regulating PPARg and C/EBPa expression, PTIP plays a critical role in adipogenesis.
Histone methylation regulator PTIP is required for PPARgamma and C/EBPalpha expression and adipogenesis.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity.
No sample metadata fields
View Samples3T3-L1 fibroblasts are a commonly used in vitro model for adipogenesis. When induced with hormones, they differentiate into mature fat cells. Here, microarrays were used to study 3T3-L1 adipose differentiation through time.
Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity.
No sample metadata fields
View SamplesSphingosine-1-phosphate (S1P) is a sphingolipid metabolite that regulates basic cell functions through metabolic and signaling pathways. Intracellular metabolism of S1P is controlled, in part, by two homologous S1P phosphatases, 1 and 2, which are encoded by Sgpp1 and Sgpp2, respectively. S1P phosphatase activity is needed for efficient recycling of sphingosine into the sphingolipid synthesis pathway. S1P phosphatase 1 is important for skin homeostasis, but little is known about the functional role of S1P phosphatase 2. To identify the functions of S1P phosphatase 2 in vivo, we studied mice with the Sgpp2 gene deleted. In contrast to Sgpp1-/- mice, Sgpp2-/- mice had normal skin and were viable into adulthood. Unexpectedly, WT mice expressed Sgpp2 mRNA at high levels in pancreatic islets when compared with other tissues. Sgpp2-/- mice had normal blood insulin levels and pancreatic islet size; however, Sgpp2-/- mice treated with a high-fat diet (HFD) had significantly lower blood insulin levels and smaller pancreatic islets compared with WT mice. The smaller islets in the HFD-treated Sgpp2-/- mice had a significantly lower adaptive -cell proliferation rate in response to the diet compared with HFD-treated WT mice. Importantly, -cells from Sgpp2-/- mice fed a normal diet showed significantly increased expression of proteins characteristic of the endoplasmic reticulum (ER) stress response compared with -cells from WT mice. Our results suggest that Sgpp2 deletion causes -cell ER stress, which is a known cause of -cell dysfunction, and reveal a novel juncture in the sphingolipid recycling pathway that could impact the development of diabetes.
Sphingosine-1-phosphate Phosphatase 2 Regulates Pancreatic Islet β-Cell Endoplasmic Reticulum Stress and Proliferation.
No sample metadata fields
View SamplesGene expression was studied from different mouse tissues
Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A tissue-specific landscape of sense/antisense transcription in the mouse intestine.
Specimen part
View SamplesGenome wide expression profiling to determine the overlap of Affymetrix-signals with SOLID sequencing
A tissue-specific landscape of sense/antisense transcription in the mouse intestine.
Specimen part
View SamplesPro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus (ARC) are oppositely regulated by caloric depletion and coordinately stimulate and inhibit homeostatic satiety, respectively. This bimodality is principally underscored by the antagonistic actions of these ligands at downstream melanocortin-4 receptors (MC4R) in the paraventricular nucleus of the hypothalamus (PVH). Although this population is critical to energy balance, the underlying neural circuitry remains unknown. Using mice expressing Cre recombinase in MC4R neurons, we demonstrate bidirectional control of feeding following real-time activation and inhibition of PVH(MC4R) neurons and further identify these cells as a functional exponent of ARC(AgRP) neuron-driven hunger. Moreover, we reveal this function to be mediated by a PVH(MC4R)?lateral parabrachial nucleus (LPBN) pathway. Activation of this circuit encodes positive valence, but only in calorically depleted mice. Thus, the satiating and appetitive nature of PVH(MC4R)?LPBN neurons supports the principles of drive reduction and highlights this circuit as a promising target for antiobesity drug development. Overall design: Single-neuron mRNA-seq was performed on fluorescently-labeled or -unlabeled cells that were manually isolated from dissociated adult mouse paraventricular and arcuate hypothalamus: Mc4r-2a-Cre::L10-GFP+ or Mc4r-2a-Cre::AAV-XFP+ or Mc4r-2a-Cre::AAV-XFP-negative PVH neurons; Agrp-IRES-Cre::L10-GFP+ ARC neurons; Pomc-hrGFP+ ARC neurons; and vGLUT2-IRES-Cre::AAV-XFP+ ARC neurons Note: Raw files unavailable for samples GSM2413312 GSM2413313 GSM2413314 GSM2413346 GSM2413347
A neural basis for melanocortin-4 receptor-regulated appetite.
Sex, Specimen part, Cell line, Subject
View SamplesImbalances in glucose and energy homeostasis are at the core of the worldwide epidemic of obesity and diabetes. Here, we illustrate an important role of the TGF-beta/Smad3 signaling pathway in regulating glucose and energy homeostasis. Smad3 deficient mice are protected from diet-induced obesity and diabetes. Interestingly, the metabolic protection is accompanied by Smad3-/- white adipose tissue acquiring the bioenergetic and gene expression profile of brown fat/skeletal muscle. Smad3-/- adipocytes demonstrate a marked increase in mitochondrial biogenesis, with a corresponding increase in basal respiration, and Smad3 acts as a repressor of PGC-alpha1 expression. We observe significant correlation between TGF-beta1 levels and adiposity in rodents and humans. Further, systemic blockade of TGF-beta1 signaling protects mice from obesity, diabetes and hepatic steatosis. Together, these results demonstrate that TGF-beta signaling regulates glucose tolerance and energy homeostasis and suggest that modulation of TGF-beta1 activity might be an effective treatment strategy for obesity and diabetes.
Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling.
Treatment
View Samples