In many parts of the US, selenium (Se)-deficient soils dictate the necessity of supplementing this trace mineral directly to the diet of cattle, with the form of Se supplied known to affect tissue-level gene expression profiles and presumably function. Because a deficiency of Se will reduce fertility, including reduced biosynthesis of testosterone by the testis and an increased frequency of abnormalities in mature spermatozoa, we hypothesized that the form of Se supplemented to cows during gestation would affect the transcriptome of the neonatal bull calf testis. Microarray analysis using the Bovine gene 1.0 ST array (GeneChip; Affymetrix, Inc., Santa Clara, CA) was conducted to determine whether gestational form of supplemental Se affected gene expression profiles in the testis. GeneChip transcript annotations were last updated in January 2013 using the annotation update release 33 from the NetAffx annotation database.
Gestational form of Selenium in Free-Choice Mineral Mixes Affects Transcriptome Profiles of the Neonatal Calf Testis, Including those of Steroidogenic and Spermatogenic Pathways.
Specimen part
View SamplesA multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets.
A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets.
No sample metadata fields
View Samples- Gene expression changes linked to two step immortalization of human mammary epithelial cells (HMEC).
A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers.
Specimen part
View SamplesDuring hematopoiesis, cells originating from the same stem cell reservoir differentiate into distinct cell types. The mechanisms enabling common progenitors to differentiate into distinct cell fates are not fully understood. Here, we identify chromatin-regulating and cell-fate-determining transcription factors (TF) governing dendritic cell (DC) development by annotating the enhancer and promoter landscapes of the DC lineage. Combining these analyses with detailed over-expression, knockdown and ChIP-Seq studies, we show that Irf8 functions as a plasmacytoid DC epigenetic and fate-determining TF, regulating massive, cell-specific chromatin changes in thousands of pDC enhancers. Importantly, Irf8 forms a negative feedback loop with Cebpb, a monocyte-derived DC epigenetic fate-determining TF. We show that using this circuit logic, differential activity of TF can stably define epigenetic and transcriptional states, regardless of the microenvironment. More broadly, our study proposes a general paradigm that allows closely related cells with a similar set of signal-dependent factors to generate differential and persistent enhancer landscapes. Overall design: Here analyzed 2 experiments, each one contains samples of moDC and pDC ex vivo cultured cells. The first experiment contains 32 samples of moDC and pDC following stimulation with various TLR stimulators. The second experiment contains 8 samples of moDC and pDC following perturbations; Cebpb and Irf8 knock down or over expression.
A negative feedback loop of transcription factors specifies alternative dendritic cell chromatin States.
No sample metadata fields
View SamplesComparison of laminin binding and laminin non-binding germ cells
Defining the spermatogonial stem cell.
No sample metadata fields
View SamplesRat germ cells
Defining the spermatogonial stem cell.
No sample metadata fields
View SamplesMolecular distinctions between the stasis and telomere attrition senescence barriers in cultured human mammary epithelial cells
Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells.
Specimen part, Subject
View SamplesSTAT3 is a transcription factor playing a crucial role in inflammation, immunity and oncogenesis, able to induce distinct subsets of target genes in different cell types or under different conditions. Identification of direct transcriptional targets however has only defined a relatively limited set of genes, not sufficient to explain its variegated functions. In order to improve our understanding of the STAT3 transcriptional network we decided to develop a computational approach for the discovery of STAT3 functional binding sites. Upon generating a Positional Weight Matrix to define STAT3 binding sites, we applied a loglikelihood ratio scoring function and were able to assign affinity scores with very high specificity (93.5%) as measured by EMSA. STAT3 binding sites scoring above a stringent threshold have been identified genome-wide in Homo sapiens and Mus musculus and selected for phylogenetic conservation by genomic sequence alignment using eight vertebrate species. Validation was carried out on a subset of predicted
Genome-wide discovery of functional transcription factor binding sites by comparative genomics: the case of Stat3.
No sample metadata fields
View SamplesHuman umbilical cord Whartons jelly stem cells (WHJSC) are gaining attention as a possible clinical source of mesenchymal stem cells for use in cell therapy and tissue engineering due to their high accessibility, expansion potential and plasticity. However, the cell viability changes that are associated to sequential cell passage of these cells are not known. In this analysis, we have identified the gene expression changes that are associated to cell passage in WHJSC.
Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy.
Specimen part
View SamplesDietary gluten proteins (prolamins) from wheat, rye, and barley are the driving forces behind celiac disease, an organ-specific autoimmune disorder that targets both the small intestine and organs outside the gut. In the small intestine, gluten induces inflammation and a typical morphological change of villous atrophy and crypt hyperplasia. Gut lesions improve and heal when gluten is excluded from the diet and the disease relapses when patients consume gluten. Oral immune tolerance towards gluten may be kept for years or decades before breaking tolerance in genetically susceptible individuals. Celiac disease provides a unique opportunity to study autoimmunity and the transition in immune cells as gluten breaks oral tolerance. Seventy-three celiac disease patients on a long-term gluten-free diet ingested a known amount of gluten daily for six weeks. A peripheral blood sample and intestinal biopsies were taken before and six weeks after initiating the gluten challenge. Biopsy results were reported on a continuous numeric scale that measured the villus height to crypt depth ratio to quantify gluten-induced gut mucosal injury. Pooled B and T cells were isolated from whole blood, and RNA was analyzed by DNA microarray looking for changes in peripheral B- and T-cell gene expression that correlated with changes in villus height to crypt depth, as patients maintained or broke oral tolerance in the face of a gluten challenge.
A B-Cell Gene Signature Correlates With the Extent of Gluten-Induced Intestinal Injury in Celiac Disease.
Specimen part, Disease, Disease stage, Treatment, Subject
View Samples