Prostate cancer is a common cause of cancer-related death in men. E6AP, an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells in vitro and in vivo. However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumour suppressor targets of E6AP, promyelocytic leukemia protein and p27. To explore additional players that are regulated downstream of E6AP, we combined a transcriptomic and proteomic approaches. We identified and quantified 16,130 transcripts and 7,209 proteins in castration resistant prostate cancer cell line, DU145. A total of 2,763 transcripts and 308 proteins were significantly altered upon knockdown of E6AP. Pathway analyses supported the known phenotypic effects of E6AP knockdown in prostate cancer cells and in parallel exposed novel potential links of E6AP with cancer metabolism, DNA damage repair and immune response. Changes in expression of the top candidates were confirmed using real-time polymerase chain reaction. Of these, clusterin, a stress-induced chaperone protein, commonly deregulated in prostate cancer, was pursued further. Knockdown of E6AP resulted in increased clusterin transcript and protein levels in vitro and in vivo. Concomitant knockdown of E6AP and clusterin supported the contribution of clusterin to the phenotype induced by E6AP. Overall, results from this study provide insight into the potential biological pathways controlled by E6AP in prostate cancer cells and identifies clusterin as a novel target of E6AP. Overall design: Examination of candidate targets regulated by E6AP at transcript level
Proteotranscriptomic Measurements of E6-Associated Protein (E6AP) Targets in DU145 Prostate Cancer Cells.
Cell line, Subject
View SamplesWe describe a method for isolating RNA suitable for high-throughput RNA sequencing (RNA-seq) from small numbers of fluorescently labeled cells isolated from live zebrafish (Danio rerio) embryos without using costly, commercially available columns. This method ensures high cell viability after dissociation and suspension of cells and gives a very high yield of intact RNA. We demonstrate the utility of our new protocol by isolating RNA from fluorescence activated cell sorted (FAC sorted) pineal complex neurons in wild-type and tbx2b knockdown embryos at 24 hours post fertilization. Tbx2b is a transcription factor required for pineal complex formation. We describe a bioinformatics pipeline used to analyze differential expression following high-throughput sequencing and demonstrate the validity of our results using in situ hybridization of differentially expressed transcripts. This protocol brings modern transcriptome analysis to the study of small cell populations in zebrafish. Overall design: Differential expression analysis of mRNA levels in a single time-point (24 hpf) between wild-type and Tbx2b deficient FAC sorted pineal complex cells
Identification of differentially expressed genes during development of the zebrafish pineal complex using RNA sequencing.
No sample metadata fields
View SamplesHuman survival from injury requires an appropriate inflammatory and immune response. We describe the circulating leukocyte transcriptome after severe trauma and show that the severe stress produce a global
A genomic storm in critically injured humans.
Sex, Age, Specimen part
View SamplesBlood was sampled from severe burns patients over time as well as healthy subjects. Genome-wide expression analyses were conducted using the Affymetrix U133 plus 2.0 GeneChip.
Genomic responses in mouse models poorly mimic human inflammatory diseases.
Sex, Age, Specimen part
View SamplesEnhanced BMP or canonical Wnt (cWnt) signaling are therapeutic strategies employed to enhance bone formation and fracture repair, but the mechanisms each pathway utilizes to specify cell fate of bone-forming osteoblasts remain poorly understood. Among all BMPs expressed in bone, we find that singular deficiency of Bmp2 blocks the ability of cWnt signaling to specify osteoblasts from limb bud or bone marrow progenitors. When exposed to cWnts, Bmp2-deficient cells fail to progress through the Runx2/Osx1 checkpoint and thus do not upregulate multiple genes controlling mineral metabolism in osteoblasts. Cells lacking Bmp2 after induction of Osx1 differentiate normally in response to cWnts, supporting pre-Osx1+ osteoprogenitors as a critical source and target of BMP2. Our analysis furthermore reveals Grainyhead-like 3 (Grhl3) is to date an unidentified transcription factor in the osteoblast gene regulatory network that is induced during bone development and bone repair, and acts upstream of Osx in a BMP2-dependent manner. The Runx2/Osx1 transition therefore receives critical regulatory inputs from BMP2 that are not compensated for by cWnt signaling, and this is mediated at least in part by induction and activation of Grhl3.
Specification of osteoblast cell fate by canonical Wnt signaling requires Bmp2.
Age, Specimen part
View SamplesTo understand the age-dependent response to burn injury, blood samples from pediatric and adult patients were collected at different times after severe burn injury.
Analysis of factorial time-course microarrays with application to a clinical study of burn injury.
Sex, Disease
View SamplesExpression profiling of normal NIH3T3 and transformed NIH3T3 K-ras cell lines grown for 72 hours in optimal glucose availability (25 mM glucose) or low glucose availability (1 mM). Low glucose induces apoptosis in transformed cells as compared to normal ones.
Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.
Cell line, Time
View SamplesSTAT2 is an essential transcription factor in type I interferon (IFN) signaling. STAT2 mediates the antigrowth and apoptotic effects of IFN as demonstrated in cell lines thus leading to the hypothesis that STAT2 has tumor suppressor function.
Host STAT2/type I interferon axis controls tumor growth.
Specimen part
View Samplesexpression files supporting: Application of genome-wide expression analysis to human health and disease. PNAS
Application of genome-wide expression analysis to human health and disease.
No sample metadata fields
View SamplesBackground: The main focus of the work was the evaluation of gene expression differences between our established NSCLC 3D cell culture model and the 2D cell culture in regard to the use of our model for drug screening applications.
3D-cultivation of NSCLC cell lines induce gene expression alterations of key cancer-associated pathways and mimic <i>in-vivo</i> conditions.
Cell line
View Samples