To understand the contribution of the poly(A)binding protein to the translation of specific mRNAs, we compared the ribosome occupancy of mRNAs in wild type Arabidopsis and pab2 pab8 double mutant seedlings. The mutants continue to express the PAB4 paralog of PABP.
The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant.
Specimen part
View SamplesTo understand the contribution of the RPL24B protein, a component of the large 60S ribosomal subunit, to the translation of specific mRNAs, we compared the ribosome occupancy of mRNAs in wild type Arabidopsis and the rpl24b/stv1-1 T-DNA insertion mutant.
The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant.
Age, Specimen part
View SamplesTo understand the contribution of the k subunit of eukaryotic transcription factor 3 (eif3k) to the translation of specific mRNAs, we compared the polysome loading states and overall transcript levels of wild type Arabidopsis and the eif3k T-DNA insertion mutant by Affymetrix arrays.
The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant.
Age, Specimen part
View SamplesTo understand the contribution of the k subunit of eukaryotic transcription factor 3 (eif3k) to the translation of specific mRNAs, we compared the polysome loading states and overall transcript levels of wild type Arabidopsis and the eif3k T-DNA insertion mutant by Affymetrix arrays.
The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant.
Age, Specimen part
View SamplesComparison of LAPC cells isolated from naive PBS treated and influenza treated mice.
Identification of a novel antigen-presenting cell population modulating antiinfluenza type 2 immunity.
Specimen part
View SamplesPRDM proteins belong to the SET domain protein family, which is involved in the regulation of gene expression. Although few PRDM members possess histone methyltransferase activity, the molecular mechanisms by which the other members exert transcriptional regulation remain to be delineated. In this study, we find that Prdm5 is highly expressed in mouse embryonic stem (mES) cells and exploit this cellular system to characterize molecular functions of Prdm5. By combining proteomics and next-generation sequencing technologies, we identify Prdm5 interaction partners and genomic occupancy. We demonstrate that although Prdm5 is dispensable for mES cell maintenance, it directly targets genomic regions involved in early embryonic development and affects the expression of a subset of developmental regulators during cell differentiation. Importantly, Prdm5 interacts with Ctcf, cohesin, and TFIIIC and cooccupies genomic loci. In summary, our data indicate how Prdm5 modulates transcription by interacting with factors involved in genome organization in mouse embryonic stem cells. Overall design: For each condition (ATRA-induced differentiation model and LIF cytokine deprivation) three replicate are available for both Prdm5 wt mES cells and Prdm5 KO mES cells, for a total of 12 samples
Genomic and proteomic analyses of Prdm5 reveal interactions with insulator binding proteins in embryonic stem cells.
No sample metadata fields
View SamplesThe signaling pathway for Nodal, a ligand of the transforming growth factor-beta (TGF-beta) superfamily, plays a central role in regulating the maintenance and/or differentiation of stem cell types that can be derived from the peri-implantation mouse embryo. Extraembryonic endoderm stem (XEN) cells are derived from the primitive endoderm of the blastocyst, which normally gives rise to the parietal and the visceral endoderm in vivo, but XEN cells do not contribute efficiently to the visceral endoderm in chimeric embryos. We have found that treatment of XEN cells with Nodal and/or Cripto, an EGF-CFC co-receptor for Nodal, results in up-regulation of markers for visceral endoderm as well as anterior visceral endoderm (AVE). Re-introduction of treated XEN cells into chimeric embryos by blastocyst injection or morula aggregation results in contribution to visceral endoderm and AVE. In culture, XEN cells do not express Cripto, but do express the related EGF-CFC co-receptor Cryptic and require Cryptic for Nodal signaling. Notably, the response to Nodal can be blocked by treatment with the ALK4/ALK5/ALK7 inhibitor SB431542, but Cripto treatment is unaffected, suggesting that its activity is independent of type I activin receptors. Gene set enrichment analysis of genome-wide expression signatures generated from XEN cells under these treatment conditions confirms the differing responses of Nodal- and Cripto-treated XEN cells to SB431542. Our findings define distinct pathways for Nodal and Cripto in the differentiation of visceral endoderm and AVE from XEN cells, and provide new insights into the specification of these cell types in vivo.
Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling.
Cell line, Treatment, Time
View SamplesPlatelet-derived growth factor-C (PDGF-C) is one of three known ligands for the tyrosine kinase receptor PDGFR. Analysis of Pdgfc null mice has demonstrated roles for PDGF-C in palate closure and the formation of cerebral ventricles, but redundancy with other PDGFR ligands might hide additional functions. In search of further developmental roles for PDGF-C, we generated mice that were double mutants for Pdgfc -/- and Pdgfra GFP/+. These mice display a range of severe phenotypes including cerebellar malformation, neuronal over-migration in the cerebral cortex, spina bifida and lung emphysema. We focused our analysis on the central nervous system (CNS), where PDGF-C was identified as a critical factor for the formation of meninges and assembly of the glia limitans basement membrane.
A role for PDGF-C/PDGFRα signaling in the formation of the meningeal basement membranes surrounding the cerebral cortex.
Specimen part
View SamplesGenome-wide association studies (GWAS) have identified 19 risk variants associated with colorectal cancer. As most of these risk variants reside outside the coding regions of genes, we conducted cis-expression quantitative trait loci (cis-eQTL) analyses to investigate possible regulatory functions on the expression of neighboring genes.
cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue.
Disease, Disease stage
View Samples