This SuperSeries is composed of the SubSeries listed below.
Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling.
Specimen part, Time
View SamplesBiological processes are optimized by circadian and circannual biological timing systems. In vertebrates, the pineal gland plays an essential role in these systems by converting time into a hormonal signal, melatonin; in all vertebrates, circulating melatonin is elevated at night, independent of lifestyle. At night, sympathetic input to the pineal gland, originating from the circadian clock in the suprachiasmatic nucleus, releases norepinephrine. This adrenergic stimulation causes an elevation of cAMP, which is thought to regulate many of the dramatic changes in genes expression known to occur at night. In many aspects, the adrenergic/cAMP effects on gene expression can be recapitulated in primary organ culture.
Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling.
Specimen part, Time
View SamplesBiological processes are optimized by circadian and circannual biological timing systems. In vertebrates, the pineal gland plays an essential role in these systems by converting time into a hormonal signal, melatonin; in all vertebrates, circulating melatonin is elevated at night, independent of lifestyle.
Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling.
Time
View SamplesBiological processes are optimized by circadian and circannual biological timing systems. In vertebrates, the pineal gland plays an essential role in these systems by converting time into a hormonal signal, melatonin; in all vertebrates, circulating melatonin is elevated at night, independent of lifestyle.
Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling.
Time
View SamplesIn the yeast Saccharomyces cerevisiae, cleavage factor I (CFI) and cleavage and polyadenylation factor (CPF) build the core of the transcription termination machinery. CFI comprises the Rna14, Rna15, Pcf11, and Clp1 proteins, as well as the associated Hrp5 RNA-binding protein. We found that CFI participates in the DNA damage response and that rna14-1 shows synthetic growth defects with mutants of different repair pathways, including homologous recombination, non-homologous end joining, post replicative repair, mismatch repair, and nucleotide excision repair, implicating that impaired RNAPII termination and 3-end processing decreases the cellular tolerance for DNA damage. Beyond replication progression defects, we found that bypass of the G1/S checkpoint in rna14-1 cells leads to synthetic sickness, accumulation of phosphorylated H2A, as well as increase in Rad52-foci and in recombination. Our data provide evidence that CFI dysfunction impairs RNAPII turnover, leading to replication hindrance and lower tolerance to exogenous DNA damage. These findings underscore the importance of coordination between transcription termination, DNA repair and replication in the maintenance of genomic stability.
Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae.
No sample metadata fields
View Samplesthe nuclear pore complex (NPC) is emerging as an important mediator of cellular processes beyond molecule transport, including control of gene expression, replication and DNA repair.
The Nup84 complex coordinates the DNA damage response to warrant genome integrity.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesTHO/TREX is a conserved nuclear complex that functions in mRNP biogenesis at the interface of transcription-RNA export with a key role in preventing transcription-associated genome instability.
Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles.
No sample metadata fields
View Samples