Inosine 5''-phosphate dehydrogenase (impdh) has been well known as a key enzyme in GTP biosynthesis pathway. We found that three isoforms of impdh in zebrafish, namely impdh1a, impdh1b and impdh2, all show robust circadian expression.To examine the molecular functions of three impdh isoforms in zebrafish on the genome scale, we measured the global expression changes of impdh1a, impdh1b and impdh2 morpholino injected larvae (morphants) respectively using RNA-seq. Wild type (WT), control and three impdh morphants were collected at 32 hpf. In our RNA-seq result, we identified 468, 331 and 1166 significant genes affected by impdh1a, impdh1b and impdh2 morpholino (MO) knock-down respectively. Among them, there are limited overlaps between genes affected by different MOs and only 36 genes in common among all three MOs. This indicates that the three impdh isoforms have distinct molecular functions. Overall design: To knock down the target genes, three impdh MOs and control MO were pressure-injected into 1- to 2-cell stage embryos. WT, control and three impdh morphants were raised at 28°C under 14h: 10h light/dark cycle from birth and sampled simultaneously at 32 hpf. Each group has at least 40 embryos.
Integrative analysis of circadian transcriptome and metabolic network reveals the role of de novo purine synthesis in circadian control of cell cycle.
No sample metadata fields
View SamplesAltered daily patterns of hormone action are suspected to contribute to metabolic disease. It is poorly understood how the adrenal glucocorticoid hormones contribute to the coordination of daily global patterns of transcription and metabolism. Here, we examined diurnal metabolite and transcriptome patterns in a zebrafish glucocorticoid deficiency model by RNA-Seq, NMR spectroscopy and liquid chromatography-based methods. We observed dysregulation of metabolic pathways including glutaminolysis, the citrate and urea cycles and glyoxylate detoxification. Constant, non-rhythmic glucocorticoid treatment rescued many of these changes, with some notable exceptions among the amino acid related pathways. Surprisingly, the non-rhythmic glucocorticoid treatment rescued almost half of the entire dysregulated diurnal transcriptome patterns. A combination of E-box and glucocorticoid response elements is enriched in the rescued genes. This simple enhancer element combination is sufficient to drive rhythmic circadian reporter gene expression under non-rhythmic glucocorticoid exposure, revealing a permissive function for the hormones in glucocorticoid-dependent circadian transcription. Our work highlights metabolic pathways potentially contributing to morbidity in patients with glucocorticoid deficiency, even under glucocorticoid replacement therapy. Moreover, we provide mechanistic insight into the interaction between the circadian clock and glucocorticoids in the transcriptional regulation of metabolism. Overall design: RNA-Seq from total RNA of zebrafish larvae during (5 dpf) the diurnal cycle. Time-series mRNA profiles of untreated wild type (WT), rx3t25327/t25327 [rx3 strong] and rx3t25181/t25181 [rx3 weak] mutant larvae as well as dexamethasone treated WT and rx strong larvae were generated by deep sequencing.
Extensive Regulation of Diurnal Transcription and Metabolism by Glucocorticoids.
No sample metadata fields
View SamplesGABAergic interneuron in the cortex comprise a very heterogenous group. and it is critical to identify discrete interneuron types to understand how their contributions to behavior can be modulated by external and internal cues. However, molecular difinition of these interneuron cell groups has been difficult. Comparative analysis of different interneuron subtypes can provide us new candidate marker genes which could target more specific interneuon cell group. Here we identify oxytocin responsive novel class of interneuron through our comparative analysis.
Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons.
Specimen part
View SamplesThe discovery of genetic variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula- interpeduncular axis as a critical relay circuit in the control of nicotine addiction
Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons.
Specimen part, Disease
View SamplesMutations in the enzymes IDH1 and IDH2 have been identified in a wide variety of tumors like glioma, chondrosarcoma, thyroid cancer, lymphoma, melanoma, and in acute myeloid leukemia. Mutated IDH1/2 produces the metabolite 2-hydroxyglutarate (2HG), which interferes with epigenetic regulation of gene expression, and thus may promote tumorigenesis.
Enantiomer-specific and paracrine leukemogenicity of mutant IDH metabolite 2-hydroxyglutarate.
Specimen part
View SamplesThis study sought to provide a novel ex vivo model for analyzing healing kinetics and gene expression of primary human gingival fibroblasts (hGF) within collagen scaffolds.
Cell population kinetics of collagen scaffolds in ex vivo oral wound repair.
Specimen part
View SamplesMutations in the enzymes IDH1 and IDH2 have been identified in a wide variety of tumors like glioma, chondrosarcoma, thyroid cancer, lymphoma, melanoma, and in acute myeloid leukemia. Mutated IDH1/2 produces the metabolite 2-hydroxyglutarate (2HG), which interferes with epigenetic regulation of gene expression, and thus may promote tumorigenesis.
Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML.
Specimen part
View SamplesAcute myeloid leukemia (AML) is a heterogeneous disease in respect of molecular aberrations and prognosis. We used gene expression profiling of 562 patients treated in the German AMLCG 1999 trial to develop a gene signature that predicts survival in AML.
A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia.
Age, Specimen part
View SamplesTo examine the impact of tumors on the immune system, we compared global gene expression profiles of peripheral blood T cells from previously untreated patients with B cell chronic lymphocytic leukemia (CLL) with those from age-matched healthy donors. Although the cells analyzed were not part of the malignant clone, analysis revealed differentially expressed genes, mainly involved in cell differentiation in CD4 cells and defects in cytoskeleton formation, vesicle trafficking, and cytotoxicity in CD8 cells of the CLL patients. In coculture experiments using CLL cells and T cells from healthy allogeneic donors, similar defects developed in both CD4 and CD8 cells. These changes were induced only with direct contact and were not cytokine mediated. Identification of the specific pathways perturbed in the T cells of cancer-bearing patients will allow us to assess steps to repair these defects, which will likely be required to enhance antitumor immunity.
Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells.
No sample metadata fields
View SamplesFibroblast growth factor-23 (FGF23), a circulating protein produced in bone, causes renal inorganic phosphate (Pi) wasting by down-regulation of sodium phosphate co-transporter 2a (Npt2a). The mechanism behind this action is unknown. We have previously generated transgenic mice (TG) expressing human wild-type FGF23 under the control of the 1 (I) collagen promoter. In this study we performed a large scale gene expression study of kidneys from TG mice and wild-type littermates. Several genes that play a role in Pi regulation had decreased expression levels, such as Npt2a, but also Pdzk1 which is a scaffolding protein known to interact with NPT2a. Importantly, the Klotho gene, a suggested crucial co-factor for FGF23 receptor binding and activation, was the most affected decreased gene. However, other genes proposed to regulate Pi levels, such as secreted Frizzled Related Protein 4 (sFRP4), Na+/H+ exchanger regulatory factor 1 (NHERF1) and the FGF-receptors 1-4, revealed no changes. Interestingly, expression levels of inflammatory response genes were increased and histological analysis revealed tubular nephropathy in the TG mice kidneys. In conclusion, FGF23 TG mice have altered kidney gene expression levels of several genes thought to be part of Pi homeostasis and an increase in inflammatory response genes, data supported by histological analysis. These findings may lead to further understanding of how FGF23 mediates its actions on renal Pi regulation.
Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23.
Age
View Samples