We established transgenic mice overexpressing the histone demethyase LSD1/KDM1A under the control of Sca-1 promoter and investigated the global changes in gene expression in hematopoietic progenitor cells using a microarray-
Overexpression of the shortest isoform of histone demethylase LSD1 primes hematopoietic stem cells for malignant transformation.
Specimen part
View SamplesBy comprehensive screening of long non-coding RNAs (lncRNAs) over mouse heart development, we have identified Tbx5 upstream antisense RNA (Tbx5ua). In order to understand its function, we produced Tbx5ua knock down ES cells by inserting triple bovine polyadenylation signal to the second exon of Tbx5ua. From the ES cells we made chimeric mouse embryos via tetraploid complementation assay. We conducted RNA-seq analysis on the WT and KD heart ventricles at E9.5 to further elucidate the lncRNA's molecular functions. Overall design: Single-end RNA-seq of total RNAs extracted from the ventricles of tetraploid chimeric mice generated from wildtype or Tbx5ua knockdown B6J ES cells
Important cardiac transcription factor genes are accompanied by bidirectional long non-coding RNAs.
Specimen part, Cell line, Subject
View SamplesWe generated a transgenic mouse line which express EGFP in the retina driven by the Crx promoter using BAC transgenesis. We sorted EGFP-positive photoreceptor precursors at E17.5 using FACS, and subsequently performed microarray analysis of the FACS-sorted cells.
Gene expression analysis of embryonic photoreceptor precursor cells using BAC-Crx-EGFP transgenic mouse.
Specimen part
View SamplesIn the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome regulated by Otx2 in the developing retina, we performed microarray analysis on the Otx2 CKO retina.
Analysis of transcriptional regulatory pathways of photoreceptor genes by expression profiling of the Otx2-deficient retina.
Specimen part, Time
View SamplesDrug-induced cardiac arrhythmia characterized by QT prolongation and torsade de pointes has been a major reason for drug withdrawal at the late stage of clinical trials. Current preclinical testing is still insufficient to identify drugs with pro-arrhythmic risks. Human induced pluripotent stem cell-derived cardiomyocytes are a promising development in safety screening as a reproducible human model. Using the patch-clamp technique, we showed that human induced pluripotent stem cell-derived cardiomyocytes exhibited spontaneous action potentials, which represent relatively immature forms of cardiac cells. Furthermore, in some spontaneously beating cells, a hERG blocker, E4031, depolarized membrane potentials and stopped spontaneous firing, resulting in failure to evaluate drug effects on electrophysiological parameters that reflect repolarization processes. Here we show that human stem cell-derived cardiomyocytes with transduced KCNJ2 encoding the inward-rectifier potassium channel have characteristics similar to mature cardiomyocytes including responsiveness to rate changes and potassium channel blockers. Our novel strategy could allow implementation of human induced pluripotent stem cell-derived cardiomyocytes in drug safety assessment for cardiac toxicity.
Overexpression of KCNJ2 in induced pluripotent stem cell-derived cardiomyocytes for the assessment of QT-prolonging drugs.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide DNA methylation and gene expression analyses of monozygotic twins discordant for intelligence levels.
Specimen part
View SamplesHuman intelligence demonstrates one of the highest heritabilities among human quantitative traits. Phenotypically discordant monozygotic twins provide a way to identify loci responsible for normal-range intelligence.
Genome-wide DNA methylation and gene expression analyses of monozygotic twins discordant for intelligence levels.
Specimen part
View SamplesNeuroD1 encodes a basic helix-loop-helix transcription factor involved in the development of neural and endocrine structures. NeuroD1 mRNA is highly abundant in the adult mammalian pineal gland and exhibits a developmental expression pattern similar to the retina. This is consistent with the common evolutionary origin of pinealocytes and retinal photoreceptors. Pinealocytes and retinal photoreceptors express a shared set of phototransduction genes and submammalian pinealocytes are photosensitive. In contrast to the retina, the pineal gland is a relatively homogeneous structure, composed 95% of pinealocytes. This makes the pineal gland a particularly useful model for understanding photoreceptor cell biology. The loss of NeuroD1 in the retina results in progressive photoreceptor degeneration and the molecular mechanisms underlying this retinal degeneration phenotype remain unknown. Similarly, the role that NeuroD1 plays in the pineal gland is unknown.
NeuroD1 is required for survival of photoreceptors but not pinealocytes: results from targeted gene deletion studies.
Age, Specimen part, Time
View SamplesType 1 regulatory T (Tr1) cells are one of the regulatory T cell subsets that are characterized by the production of high amount of IL-10 and lack of FOXP3 expression. Lymphocyte-activation gene 3 (LAG3) is a CD4 homologue molecule and we have previously reported that LAG3 is expressed on IL-10 producing regulatory T cells. However, naturally occurring Tr1 cells in human secondary lymphoid tissue have not been detected. We identified CD4+CD25-LAG3+ T cells in human tonsil.
Identification of tonsillar CD4<sup>+</sup>CD25<sup>-</sup>LAG3<sup>+</sup> T cells as naturally occurring IL-10-producing regulatory T cells in human lymphoid tissue.
Specimen part
View SamplesPrenatal exposure to valproic acid, an established anti-epileptic drug, has been reported to impair postnatal cognitive function of children from epileptic mothers. Nevertheless, its pathology and proper treatment to minimize the effects remain unknown. In mice, we found that the postnatal cognitive function impairment was mainly caused by a reduction of adult neurogenesis and abnormal neuronal features in the hippocampus, which could be ameliorated by voluntary running.
Reduced Adult Hippocampal Neurogenesis and Cognitive Impairments following Prenatal Treatment of the Antiepileptic Drug Valproic Acid.
Sex, Specimen part, Treatment
View Samples