Samples in this study probe the gene expression kinetics in human CCR6+ Th17 memory T cells activated under Th17 condition. Human CCR6+ Th17 memory T cells were purified from PBMC and gene expression was studied over a time course of 3 days after activation under Th17 condition. RNA from these samples was also profiled using RNA-Seq to compare different transcriptome profiling technologies.
Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells.
No sample metadata fields
View SamplesSeveral lipocalin genes from higher plants were shown to be responsive to both high and low temperature stresses and have been named as temperature-induced lipocalin (Til). In this study, a reverse genetic approach was taken to elucidate the role of Arabidopsis Til1 (At5g58070) in thermotolerance. We showed that Til1 proteins was constitutively expressed and increased significantly after heat shock treatment. A T-DNA knockout line of Til1, designated as til1-1, could not produce Til1 and showed severe defects in basal and acquired thermotolerance. Introducing a wild type copy of Til1 gene into til1-1 complemented the mutant phenotype. Over-expression of Til1 in the wild type plant did not enhance thermotolerance. Til1 is peripherally associated with plasma membrane, suggesting a regulatory or protective role of this protein in membrane function. Transcriptomic analysis showed that the heat shock response in til1-1 was not altered as compared to the wild type plants. The temperature threshold for heat shock protein induction was not affected by the level of Til1. Ion leakage analysis revealed no significant difference in membrane stability between the wild type and til1-1 seedlings. These results suggested that Til1 is not involved in regulating membrane fluidity or stability. Nevertheless, the level of malondialdehyde was significantly higher in til1-1 than in the wild type after severe heat treatment. The mutant plants were also more sensitive than the wild type to tert-butyl hydroperoxide, a reagent that induces lipid peroxidation. Taken together, our data indicate that Til1 is an essential component for thermotolerance probably by acting against lipid peroxidation induced by severe heat stress.
Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis.
No sample metadata fields
View SamplesTen-eleven translocation (Tet) family of DNA dioxygenases converts 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5- carboxylcytosine (5caC) through iterative oxidation reactions. While 5mC and 5hmC are relatively abundant, 5fC and 5caC are at very low levels in the mammalian genome. Thymine DNA glycosylase (TDG) and base excision repair (BER) pathways can actively remove 5fC/5caC to regenerate unmethylated cytosine, but it is unclear to what extent and at which part of the genome such active demethylation processes take place. Here, we have performed high-throughput sequencing analysis of 5mC/5hmC/5fC/5caC- enriched DNA using modification-specific antibodies and generated genome-wide distribution maps of these cytosine modifications in wild-type and Tdg-deficient mouse embryonic stem cells (ESCs). We observe that the steady state 5fC and 5caC are preferentially detected at repetitive sequences in wild-type mouse ESCs. Depletion of TDG causes marked accumulation of 5fC and 5caC at a large number of distal gene regulatory elements and transcriptionally repressed/poised gene promoters, suggesting that Tet/TDG-dependent dynamic cycling of 5mC oxidation states may be involved in regulating the function of these regions. Thus, comprehensive mapping of 5mC oxidation and BER pathway activity in the mammalian genome provides a promising approach for better understanding of biological roles of DNA methylation and demethylation dynamics in development and diseases.
Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics.
Specimen part
View SamplesTen-eleven translocation (Tet) family of DNA dioxygenases converts 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5- carboxylcytosine (5caC) through iterative oxidation reactions. While 5mC and 5hmC are relatively abundant, 5fC and 5caC are at very low levels in the mammalian genome. Thymine DNA glycosylase (TDG) and base excision repair (BER) pathways can actively remove 5fC/5caC to regenerate unmethylated cytosine, but it is unclear to what extent and at which part of the genome such active demethylation processes take place. Here, we have performed high-throughput sequencing analysis of 5mC/5hmC/5fC/5caC- enriched DNA using modification-specific antibodies and generated genome-wide distribution maps of these cytosine modifications in wild-type and Tdg-deficient mouse embryonic stem cells (ESCs). We observe that the steady state 5fC and 5caC are preferentially detected at repetitive sequences in wild-type mouse ESCs. Depletion of TDG causes marked accumulation of 5fC and 5caC at a large number of distal gene regulatory elements and transcriptionally repressed/poised gene promoters, suggesting that Tet/TDG-dependent dynamic cycling of 5mC oxidation states may be involved in regulating the function of these regions. Thus, comprehensive mapping of 5mC oxidation and BER pathway activity in the mammalian genome provides a promising approach for better understanding of biological roles of DNA methylation and demethylation dynamics in development and diseases.
Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics.
Specimen part
View SamplesMucuna pruriens extract MPE pretreatment may have a direct protective effect on heart (other than immunological neutralization of the venom neurotoxin and phospholipase A2 by the anti-MPE antibodies) that renders the heart more resistant to the toxic action of the venom
Prophylactic effect of Mucuna pruriens Linn (velvet bean) seed extract against experimental Naja sputatrix envenomation: gene expression studies.
Specimen part, Treatment
View SamplesAnalysis of Allelic bias in clonal lymphoblastoid cells. Abstract: In mammals, numerous autosomal genes are subject to mitotically stable monoallelic expression (MAE), including genes that play critical roles in a variety of human diseases. Due to challenges posed by the clonal nature of MAE, very little is known about its regulation; in particular, no molecular features have been specifically linked to MAE. Here we report an approach that distinguishes MAE genes in human cells with great accuracy: a chromatin signature consisting of chromatin marks associated with active transcription (H3K36me3) and silencing (H3K27me3) simultaneously occurring in the gene body. The MAE signature is present in ~20% of ubiquitously expressed genes and over 30% of tissue-specific genes across cell types. Notably, it is enriched among key developmental genes that have bivalent chromatin structure in pluripotent cells. Our results open a new approach to the study of MAE that is independent of polymorphisms, and suggest that MAE is linked to cell differentiation. Overall design: Poly A purified total RNA was used for library construction using a method described by Parkhomchuk et. al. NAR 2009. The library was strand-specific but the pipeline for data analysis does not assume the library is strand-specific.
Chromatin signature of widespread monoallelic expression.
No sample metadata fields
View Sampleswe analyzed pathogen-induced changes in the transcriptome of Vitis vinifera Cabernet sauvignon and Vitis aestivalis Norton by conducting a large-scale study to measure transcript abundance at 0, 4, 8, 12, 24, and 48 hours post-treatment in conidiospore- and mock-inoculated leaves using Affymetrix GeneChip Vitis vinifera Genome Array
Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine.
No sample metadata fields
View SamplesWe surveyed the transcriptomes of the whole heart and whole gastrocnemius muscle taken from two different types of Balb/c-DBAj hybrid mice (10-11 weeks old). The colon cancer bearing mice are called C26. The NTB are the non-tumor bearing mice.
Cardiac and skeletal muscles show molecularly distinct responses to cancer cachexia.
Specimen part
View SamplesUsing microarrays to genotype the parental origin of progeny resulting from a cross between S96 and YJM789 yeast strains, we mapped the distribution of crossovers that occurred during meiosis. Knowledge of the crossover distribution allowed us to assess changes in crossover control in wild type and mutant strains.
Global analysis of the meiotic crossover landscape.
No sample metadata fields
View SamplesSOX7 was commonly downregulated in AML by hypermethylation.
Suppression of SOX7 by DNA methylation and its tumor suppressor function in acute myeloid leukemia.
Cell line
View Samples