Mesenchymal stem cells (MSCs) and their cellular response to various stimuli have been characterized in great detail in culture conditions. In contrast, the cellular response of MSCs in an in vivo setting is still uncharted territory. In this study, we investigated the cellular response of MSCs following transplantation into spinal cord injury (SCI).Mouse bone marrow-derived MSCs were transplanted 24h following severe contusion SCI in mice. As controls, MSCs transplanted to uninjured spinal cord and non-transplanted MSCs were used. At seven days post transplantation, the MSCs were isolated from the SCI, and their global transcriptional changes investigated using RNA-sequencing. We found that MSCs transplanted into SCI down-regulate their response to cytokines, tendency to adhere and to undergo phagocytosis but up-regulate their ability to repair DNA and proliferate. Overall design: Evaluation of transcriptional changes in transplanted mesenchymal stem cells.
Mesenchymal stem cells transplanted into spinal cord injury adopt immune cell-like characteristics.
Subject
View SamplesUFH-001 cells, a newly isolated breast cancer line, have an STR profile that is most similar to that of the control MCF10A cells. Yet, the UFH-001 line is tumor forming with a triple negative phenotype. These cells have a unique transcriptome profile associated numerous breast cancer marker genes.
Selective inhibition of carbonic anhydrase IX over carbonic anhydrase XII in breast cancer cells using benzene sulfonamides: Disconnect between activity and growth inhibition.
Specimen part, Cell line
View SamplesWe used next generation sequencing to analyze the gene expression changes in U2OS osteosarcoma cells expressing shRNA targeting the promyelocytic leukemia (PML) gene transcripts Overall design: cDNA libraries of U2OS cells expressing control shRNA or shRNA targeting PML were generated from one biological replicate
PML nuclear bodies contribute to the basal expression of the mTOR inhibitor DDIT4.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage
View SamplesWe surveyed the genome-wide DNA methylation levels and gene expression patterns in patients with pediatric acute lymphoblastic leukemia. Using Affymetrix U133 Plus 2.0 GeneChips, we identified a relatively small set of CpG sites that are highly correlated with gene expression.
Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner.
Sex, Age, Specimen part, Treatment
View SamplesHdac1 and 2 are important regulators of developmental processes. In this study we created microglia specific compound Hdac1 and Hdac2 knock out mice. Pre-natal ablation of both Hdac1 and 2 from microglia leads to reduced cell number and altered cell morphology. To investigate how Hdac1 and 2 knock out in microglia alters cellular gene expression profile we carried out RNA-seq analysis at different time points. Overall design: We used FACS sorted microglia cells from control and Hdac1/2fl/flCx3cr1Cre (constituitive knockout) or Hdac1/2fl/flCx3cr1CreERT2 (inducible) mice at different time points viz. Embryonic day 16 (E16 - inducible knockout only), Post natal day 0 (P0), 2 and 6 weeks after birth
Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner.
Age, Treatment, Subject
View SamplesEpigenetic alterations has been implicated in the pathology of several neurodegenerative diseases. To investigate the role of microglial Hdac1 and 2 in the pathogenesis of Alzheimer's disease (AD), we created microglia specific compound Hdac1 and Hdac2 knock out mice in 5X FAD background. Genetic ablation of Hdac1 and 2 from microglia reduced amyloid plaque burden and improved spatial learning and memory function.
Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner.
Sex, Specimen part
View SamplesAmyotrophic lateral sclerosis (ALS) is a paralytic degenerative disease of the nervous system. In the SOD1 mouse model of ALS we found loss of the molecular and functional microglia signature associated with pronounced expression of miR-155 in SOD1 mice. We also found increased expression of miR-155 in the spinal cord of ALS subjects. Genetic ablation of miR-155 increased survival in SOD1 mice and reversed the abnormal microglial and monocyte molecular signature. In addition, dysregulated proteins in the spinal cord of SOD1 mice that we identified in human ALS spinal cords and CSF were restored in SOD1G93A/miR155-/- mice. Treatment of SOD1 mice with anti-miR-155 SOD1 mice injected systemically or into the cerebrospinal fluid prolonged survival and restored the microglial unique genetic and microRNA profiles. Our findings provide a new avenue for immune based therapy of ALS by targeting miR-155. Overall design: Total RNA was isolated from whole lumbar spinal cord homogenate from healthy control donors without known neurologic diseases and sporadic and familial ALS.
Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice.
No sample metadata fields
View SamplesWe used mammosphere formation assay and label-retention assay as functional cellular approaches to enrich for cells with different degree of cancer stem cell properties in the breast cancer cell line MDA-MB-231 and performed single-cell RNA sequencing Overall design: Single cells from three different populations: 30 cells from G1 cell cycle phase cultured in adherent conditions, 46 cells with low proliferation cultured in non-adherent conditions (mammosphere assasy), 45 cells with high proliferation cultured in non-adherent conditions (mammosphere assay)
Erratum: Identification of Breast Cancer Stem Cell Related Genes Using Functional Cellular Assays Combined With Single-Cell RNA Sequencing in MDA-MB-231 Cells.
Cell line, Subject
View Samples