Whole-transcriptome survey of gene expression differences between germ-free (GF) and conventionally raised (CONV-R) mice.
Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.
Specimen part
View SamplesThe in vitro test battery of the European research consortium ESNATS (novel stem cell-based test systems) has been used to screen for potential human developmental toxicants. As part of this effort, the migration of neural crest (MINC) assay has been used to evaluate chemical effects on neural crest function. It identified some drug-like compounds in addition to known environmental toxicants. The hits included the HSP90 inhibitor geldanamycin, the chemotherapeutic arsenic trioxide, the flame-retardant PBDE-99, the pesticide triadimefon and the histone deacetylase inhibitors valproic acid and trichostatin A. Transcriptome changes triggered by these substances in human neural crest cells were recorded and analysed here to answer three questions: (1) can toxicants be individually identified based on their transcript profile; (2) how can the toxicity pattern reflected by transcript changes be compacted/ dimensionality-reduced for practical regulatory use; (3) how can a reduced set of biomarkers be selected for large-scale follow up? Transcript profiling allowed clear separation of different toxicants and the identification of toxicant types in a blinded test study. We also developed a diagrammatic system to visualize and compare toxicity patterns of a group of chemicals by giving a quantitative overview of altered superordinate biological processes (e.g. activation of KEGG pathways or overrepresentation of gene ontology terms). The transcript data were mined for potential markers of toxicity, and 39 transcripts were selected to either indicate general developmental toxicity or distinguish compounds with different modes-of-action in read-across. In summary, we found inclusion of transcriptome data to largely increase the information from the MINC phenotypic test.
Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration.
Sex, Specimen part
View SamplesWe measured gene expression of D. melanogaster female heads and abdomens after mating with males from six populations evolved under either enforced monogamy (no male-male competition, 3 populations) or sustained polygamy (intense male-male competition, 3 populations). Overall design: Three samples of virgin female heads and six samples of mated female heads (one each per male evolved population, of which there are three monogamous and three polygamous), for nine libraries. Also, three samples of virgin female abdomens and six samples of mated female abdomens (one each per male evolved population, of which there are three monogamous and three polygamous), for nine libraries. In total, eighteen libraries sequenced in 8 lanes.
Sexual conflict drives male manipulation of female postmating responses in <i>Drosophila melanogaster</i>.
Sex, Specimen part, Subject
View SamplesMid-shaft fracture stimulates bone lengthening by increasing linear growth at the growthplate. This project studied changes in mRNA in the proximal growthplate after a mid-shaft fracture in a rat model.
Evidence for overgrowth after midfemoral fracture via increased RNA for mitosis.
No sample metadata fields
View SamplesPrimary human foreskin fibroblasts (HFF) were exposed to either salt stress (80mM KCl) or heat stress (44ºC). Newly transcribed RNA was labelled by adding 500µM 4-thiouridine (4sU) to the cell culture media for 1h. Total cellular RNA was isolated using Trizol. Newly transcribed RNA was purified following the protocol described in Raedle et al. JoVE 2013. Overall design: Newly transcribed RNA was labelled in one hour intervals during either salt or heat stress (prior to stress, 0-1h or 1-2h). All 4sU-RNA samples were sent for sequencing. Two independent biological replicates were analysed.
HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes.
Specimen part, Subject, Time
View SamplesQuiescent stem cells of glioblastoma (GBM), a malignant primary brain tumor, are potential sources for recurrence after therapy. However, the gene expression program underlying the physiology of GBM stem cells remains unclear. We have isolated quiescent GBM cells by engineering them with a knock-in H2B-GFP proliferation reporter and expanding them in a 3D tumor organoid model that mimics tumor heterogeneity. H2B-GFP label retaining quiescent cells were subjected to stem cell assays and RNA-Seq gene expression analysis. While quiescent GBM cells were similar in clonal culture assays to their proliferative counterparts, they displayed higher therapy resistance. Interestingly, quiescent GBM cells upregulated epithelial-mesenchymal transition (EMT) genes and genes of extracellular matrix components. Our findings connect quiescent GBM cells with an EMT-like shift, possibly explaining how GBM stem cells achieve high therapy resistance and invasiveness, and suggest new targets to abrogate GBM. Overall design: Glioblastoma cancer cells in 3D organoid culture were pulsed for 2 weeks with H2B-GFP, then chased either 2 or 4 weeks. Label-retaining GFP-high cells (quiescent) were separated from bulk population, and both populations were analyzed by RNA-Seq.
Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment.
Specimen part, Subject
View SamplesWe have performed modular analyses to decipher the global transcriptional response and capture a breadth of distinct immune responses in the lungs and blood of mice infected or challenged with a broad spectrum of infectious pathogens, including parasites (Toxoplasma gondii), bacteria (Burkholderia pseudomallei), viruses (Influenza A virus and Respiratory Syncytial virus (RSV)) and fungi (Candida albicans), or allergens (House dust mite (HDM), systemic and intra-nasal challenge). In a distinct set of infectious diseases, we tested the blood modular transcriptional signatures in mice infected with Plasmodium chabaudi chabaudi (malaria), murine cytomegalovirus (MCMV), Listeria monocytogenes and chronic Burkholderia pseudomallei. We also investigated the transcriptional profiles of sorted CD4 T cells (total CD4+, CD4+ CD44 high and CD4+ CD44 low) from lung and blood samples from mice challenged with HDM allergen. Moreover, we used mice deficient in either Ifnar or Ifngr, or both, to reveal the individual roles of each pathway in controlling disease in mice infected with Toxoplasma gondii. Overall design: RNA-seq analysis of blood samples obtained from mice infected with Plasmodium chabaudi chabaudi, murine cytomegalovirus (MCMV), Listeria monocytogenes and chronic Burkholderia pseudomallei.
Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases.
Specimen part, Subject
View SamplesWe have performed modular analyses to decipher the global transcriptional response and capture a breadth of distinct immune responses in the lungs and blood of mice infected or challenged with a broad spectrum of infectious pathogens, including parasites (Toxoplasma gondii), bacteria (Burkholderia pseudomallei), viruses (Influenza A virus and Respiratory Syncytial virus (RSV)) and fungi (Candida albicans), or allergens (House dust mite (HDM), systemic and intra-nasal challenge). In a distinct set of infectious diseases, we tested the blood modular transcriptional signatures in mice infected with Plasmodium chabaudi chabaudi (malaria), murine cytomegalovirus (MCMV), Listeria monocytogenes and chronic Burkholderia pseudomallei. We also investigated the transcriptional profiles of sorted CD4 T cells (total CD4+, CD4+ CD44 high and CD4+ CD44 low) from lung and blood samples from mice challenged with HDM allergen. Moreover, we used mice deficient in either Ifnar or Ifngr, or both, to reveal the individual roles of each pathway in controlling disease in mice infected with Toxoplasma gondii. Overall design: RNA-seq analysis of sorted CD4 T cells (total CD4+, CD4+CD44high and CD4+CD44low) from lung and blood samples obtained from mice challenged systemically with House dust mite (HDM) allergy.
Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases.
Specimen part, Subject
View SamplesMonocyte chemoattractant protein 1 (MCP-1/CCL2) is critically involved in directing the migration of blood monocytes to sites of inflammation. Consequently, excessive MCP-1 secretion has been linked to many (auto)inflammatory diseases, whereas a lack of expression severely impairs immune responsiveness. We demonstrate that the atypical inhibitor of NF-B (IB), a transcriptional co-activator required for the selective expression of a subset of NF-B target genes, is a key activator of the Ccl2 gene. IB-deficient macrophages exhibited impaired secretion of MCP-1 when challenged with diverse inflammatory stimuli, such as lipopolysaccharide or peptidoglycan. These findings were reflected at the level of Ccl2 gene expression, which was tightly coupled to the presence of IB. Moreover, mechanistic insights acquired by chromatin immunoprecipitation demonstrate that IB is directly recruited to the proximal promoter region of the Ccl2 gene and required for histone H3K9 trimethylation. Finally, IB-deficient mice showed significantly impaired MCP-1 secretion and monocyte infiltration in an experimental model of peritonitis. Together, these findings suggest a distinguished role of IB in mediating the targeted recruitment of monocytes in response to local inflammatory events.
IκBζ is a transcriptional key regulator of CCL2/MCP-1.
Sex, Specimen part
View SamplesPrimary human foreskin fibroblasts (HFF) were infected with wild-type simplex virus 1 (HSV-1) strain 17 at a multiplicity of infection (MOI) of 10. Newly transcribed RNA was labelled by adding 500µM 4-thiouridine (4sU) to the cell culture media for 1h. Total cellular RNA was isolated using Trizol. Newly transcribed RNA was purified following the protocol described in Raedle et al. JoVE 2013. Overall design: Newly transcribed RNA was labelled in one hour intervals during the first eight hours of HSV-1 infection. All nine 4sU-RNA samples as well as total cellular RNA of every second hour of infection were sent for sequencing. Two independent biological replicates were analysed.
Prediction of Poly(A) Sites by Poly(A) Read Mapping.
No sample metadata fields
View Samples