Next generation sequencing of OPCs grown on stiff and soft hydrogels Overall design: Illumina HiSeq4000 PE150 Sequencing
Niche stiffness underlies the ageing of central nervous system progenitor cells.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels.
Specimen part, Subject
View SamplesInduced pluripotent stem cells (iPSCs) can be differentiated toward mesenchymal stromal cells (MSCs), but at least on epigenetic level this transition remains incomplete with the current culture conditions. Hydrogels provide a more physiologic three-dimensional environment for in vitro cell culture than conventional tissue culture plastic (TCP). In this study, we followed the hypothesis that growth and differentiation of primary MSCs and of iPSC-derived MSCs (iMSCs) can be enhanced on hydrogels. To this end, we used a hydrogel made of human platelet lysate (hPL). MSCs were effectively cultured on and inside hPL-gel and demonstrated more structured deposition of extracellular matrix (ECM) components than TCP. Furthermore, hPL-gel supported differentiation of iPSCs toward MSCs. Unexpectedly, the differentiation process seemed to be hardly affected by the substrate: iMSCs generated either on TCP or hPL-gel did not reveal differences in morphology, immunophenotype, or differentiation potential. Moreover, global gene expression and DNA-methylation profiles were almost identical in iMSCs generated on TCP or hPL-gel. Our results indicate that matrix elasticity is less crucial for directed lineage-specific differentiation toward MSCs than expected.
Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels.
Specimen part, Subject
View SamplesAnalysis of the transcriptome of mononuclear side population (SP) and main population (MP) cells of human fetal skeletal muscle from 12 human subjects of gestational age 14-18 weeks.
Regulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin.
Specimen part
View SamplesFunctional analysis of ABCB5 in A375 and G3361 melanoma cells, by comparing stably-transfected controls to ABCB5-shRNA-targeted cells.
ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit.
Specimen part, Cell line
View SamplesTo find BMAL1-regulated genes in mice pituitary gland we performed a differential microarray from wild-type vs Bmal1-/- knock-out mice
Chromatin remodeling as a mechanism for circadian prolactin transcription: rhythmic NONO and SFPQ recruitment to HLTF.
Sex, Specimen part
View SamplesMelanoma growth is driven by malignant melanoma initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member, ABCB5. ABCB5+ melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE-1 and are associated with CD31-negative vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5+ MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5+ tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced in a VEGFR-1-dependent manner expression of CD144 in ABCB5+ subpopulations that constitutively expressed VEGFR-1, but not in ABCB5- bulk populations that were predominantly VEGFR-1-negative. In vivo, melanomaspecific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5+ VM morphology and inhibited ABCB5+ VM-associated production of the secreted melanoma mitogen, laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by >90%). Our results demonstrate that VEGFR-1 function in MMIC regulates VM and associated laminin production, and show that this function represents one mechanism through which MMIC promote tumor growth.
VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth.
Specimen part
View SamplesZebrafish have the remarkable ability to regenerate body parts including the heart, spinal cord and fins by a process referred to as epimorphic regeneration. Recent studies have illustrated that similar to adult zebrafish, early life stage-larvae also possess the ability to regenerate the caudal fin. A comparative genomic analysis was used to determine the degree of conservation in gene expression among the regenerating adult caudal fin, adult heart and larval fin. Results indicate that these tissues respond to amputation/injury with strikingly similar genomic responses. Comparative analysis revealed raldh2, a rate-limiting enzyme for the synthesis of Retinoic acid (RA), as one of the highly induced genes across the three regeneration platforms.
Comparative expression profiling reveals an essential role for raldh2 in epimorphic regeneration.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differential Methylation of H3K79 Reveals DOT1L Target Genes and Function in the Cerebellum In Vivo.
Specimen part
View SamplesBeyond the DNA sequence difference between humans and closely related apes, there are large differences in the environments that these species experience. One prominent example for this is diet. The human diet diverges from those of other primates in various aspects, such as having a high calorie and protein content, as well as being cooked. Here, we used a laboratory mouse model to identify gene expression differences related to dietary differences.
Human and chimpanzee gene expression differences replicated in mice fed different diets.
Sex, Age
View Samples