We sought to obtain gene signature specific of high oxidative phsophorylation function.
Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
Cell line, Treatment
View SamplesIt has been hypothesized that chemotherapy resistant human acute myeloid leukemia (AML) cells are enriched in an immature phenotype, cellular quiescence and leukemic initiating cells (LICs). However, these hypotheses have never been validated completely in vivo. We have developed a physiologically relevant chemotherapeutic approach with cytosine arabinoside AraC using patient-derived xenograft (PDX) models. AraC-treated AML cells are not consistently enriched for either immature cells or quiescent cells. AraC treatment does not enrich for LICs as measured by limiting dilution in secondary transplantations. Rather chemotherapy resistant cells in vivo have high levels of reactive oxygen species (ROS) and a gene signature consistent with oxidative phosphorylation (OXPHOS). Treatment of human HIGH OXPHOS but not LOW OXPHOS AML cell lines showed chemotherapy resistance in vivo, showing that essential mitochondrial functions make significant contributions to AraC resistance in AML. Accordingly, targeting mitochondrial OXPHOS metabolism through the inhibition of mitochondrial protein synthesis, the electron transfer chain or fatty acid oxidation induced an energetic shift towards LOW OXPHOS and strongly enhanced anti-leukemic effects of AraC in AML cells. These results demonstrate that chemotherapy resistance in AML is not necessarily associated with stemness but is highly dependent on a distinct oxidative metabolism, and that the HIGH OXPHOS gene signature is a robust hallmark of the AraC response in PDX and a promising therapeutic avenue to treat AML residual disease.
Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
Specimen part, Disease
View SamplesIt has been hypothesized that chemotherapy resistant human acute myeloid leukemia (AML) cells are enriched in an immature phenotype, cellular quiescence and leukemic initiating cells (LICs). However, these hypotheses have never been validated completely in vivo. We have developed a physiologically relevant chemotherapeutic approach with cytosine arabinoside AraC using patient-derived xenograft (PDX) models. AraC-treated AML cells are not consistently enriched for either immature cells or quiescent cells. AraC treatment does not enrich for LICs as measured by limiting dilution in secondary transplantations. Rather chemotherapy resistant cells in vivo have high levels of reactive oxygen species (ROS) and a gene signature consistent with oxidative phosphorylation (OXPHOS). Treatment of human HIGH OXPHOS but not LOW OXPHOS AML cell lines showed chemotherapy resistance in vivo, showing that essential mitochondrial functions make significant contributions to AraC resistance in AML. Accordingly, targeting mitochondrial OXPHOS metabolism through the inhibition of mitochondrial protein synthesis, the electron transfer chain or fatty acid oxidation induced an energetic shift towards LOW OXPHOS and strongly enhanced anti-leukemic effects of AraC in AML cells. These results demonstrate that chemotherapy resistance in AML is not necessarily associated with stemness but is highly dependent on a distinct oxidative metabolism, and that the HIGH OXPHOS gene signature is a robust hallmark of the AraC response in PDX and a promising therapeutic avenue to treat AML residual disease.
Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
Specimen part, Disease, Treatment, Subject
View SamplesThe prostate represents a complex mix of cell types and there is a need to analyze distinct cell populations to better understand their potential interactions. This study of cell-type specific gene expression patterns will contribute to understanding of how tumor epithelial cells may be affected by adjacent interstitial stromal cells within the tumor microenvirnonment.
Analysis of gene expression in prostate cancer epithelial and interstitial stromal cells using laser capture microdissection.
Specimen part, Disease, Disease stage
View SamplesThese arrays contain data from the livers of 10 week old L-Pex5 -/- male mice
Carbohydrate metabolism is perturbed in peroxisome-deficient hepatocytes due to mitochondrial dysfunction, AMP-activated protein kinase (AMPK) activation, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) suppression.
Sex, Age, Specimen part
View SamplesMicroRNA-155 (miR-155) is upregulated in primary effector CD8 T cells but is expressed at low amounts in nave cells. Anti-viral CD8 T cell responses and viral clearance were impaired in miR-155 deficient (bic-/-) mice, and this defect was intrinsic to CD8 T cells, as adoptively transferred bic-/- CD8 T cells generated greatly reduced primary and memory responses during infection. To understand the mechanism by which miR-155 regulates CD8 T cell activation, we analyzed the gene expression profiles of naive and in vitro activated wild-type and bic-/- CD8 T cells.
The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling.
Specimen part
View SamplesRationale: The Id1 and Id3 genes play major roles during cardiac development, despite their expression being confined to non-myocardial layers (endocardium endothelium - epicardium). We previously described that Id1/Id3/ double knockout (dKO) mouse embryos die at mid-gestation from multiple cardiac defects, but early demise precluded the studies of the roles of Id in the adult mice.
Developmental ablation of Id1 and Id3 genes in the vasculature leads to postnatal cardiac phenotypes.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.
Treatment
View SamplesEndothelial colony-forming cells (ECFCs) have been reported as promising cells for regenerative medicine thanks to their angiorepair properties. Transcription factors are primary determinants of the functional capacity of the cells and TAL1 has been shown as a critical regulator of endothelial lineage in both development and adult life. However, only few (three) TAL1 targets have been identified so far in mouse and human endothelial cells. This microarray experiment, where TAL1 expression was knocked-down, was designed to identify TAL1-dependent genes in primary human endothelial stem/progenitor cells.
Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.
Treatment
View SamplesDuchenne muscular dystrophy (DMD) is an incurable neuromuscular degenerative disease, caused by a mutation in the dystrophin gene. Mdx mice recapitulate DMD features. Here we show that injection of wild-type (WT) embryonic stem cells (ESCs) into mdx blastocysts produces mice with improved pathology. A small fraction of WT ESCs incorporates into the mdx mouse nonuniformly to upregulate protein levels of dystrophin in the skeletal muscle. The chimeric muscle shows reduced regeneration and restores dystrobrevin, a dystrophin-related protein, in areas with high and with low dystrophin content. WT ESC injection also normalizes the amount of fat, a tissue that does not express dystrophin. ESC injection without dystrophin does not prevent the appearance of phenotypes in the skeletal muscle or in the fat. Thus, dystrophin supplied by the ESCs reverses disease in mdx mice globally.
Blastocyst injection of wild type embryonic stem cells induces global corrections in mdx mice.
No sample metadata fields
View Samples