We have developed a microfluidics-based in vitro model of the human gut allowing co-culture of human and microbial cells and subsequent multi-omic assessment of the effect of the co-culture on the host transcriptome.
A microfluidics-based in vitro model of the gastrointestinal human-microbe interface.
Specimen part, Treatment
View SamplesThis study describes a cDNA microarray analysis that compared developing mouse MyoD-/- limb musculature (MyoD-dependent, innervated by Lateral Motor Column motor neurons) and Myf5-/- back (epaxial) musculature (Myf5-dependent, innervated by Medial Motor Column motor neurons) to the control and to each other, at embryonic day 13.5 which coincides with the robust programmed cell death of motor neurons and the inability of myogenesis to undergo its normal progression in the absence of Myf5 and MyoD that at this embryonic day cannot substitute for each other.
Role of skeletal muscle in motor neuron development.
Specimen part
View SamplesThe esophagus is a muscular tube which transports swallowed content from the oral cavity and the pharynx to the stomach. Early in mouse development, an entire layer of the esophagus, the muscularis externa, consists of differentiated smooth muscle cells. Starting shortly after mid-gestation till about two weeks after birth, the muscularis externa almost entirely consists of striated muscle. This proximal-to-distal replacement of smooth muscle by the striated muscle depends on a number of factors. To identify the nature of the hypothetical “proximal” (mainly striated muscle originating) and “distal” (mainly smooth muscle originating) signals that govern the striated-for-smooth muscle replacement, we compared the esophagus of Myf5:MyoD null fetuses completely lacking striated muscle to the normal control using cDNA microarray analysis, followed by a comprehensive databases search. Here we provide an insight into the nature of “proximal” and “distal” signals that govern the striated-for-smooth muscle replacement in the esophagus.
Striated-for-smooth muscle replacement in the developing mouse esophagus.
Specimen part
View SamplesAnalysis of the transcriptome of mononuclear side population (SP) and main population (MP) cells of human fetal skeletal muscle from 12 human subjects of gestational age 14-18 weeks.
Regulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin.
Specimen part
View SamplesFunctional analysis of ABCB5 in A375 and G3361 melanoma cells, by comparing stably-transfected controls to ABCB5-shRNA-targeted cells.
ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit.
Specimen part, Cell line
View SamplesTo find BMAL1-regulated genes in mice pituitary gland we performed a differential microarray from wild-type vs Bmal1-/- knock-out mice
Chromatin remodeling as a mechanism for circadian prolactin transcription: rhythmic NONO and SFPQ recruitment to HLTF.
Sex, Specimen part
View Samples2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has a large number of biological effects, including skin, cardiovascular, neurologic disease, diabetes, infertility and cancer. We analysed the in vitro TCDD effects on human CD34+ cells and tested the gene expression modulation by means of microarray analyses before and after TCDD exposure. We identified 253 differentially modulated probe sets, identifying 217 well-characterized genes. A large part of these were associated with cell adhesion and/or angiogenesis and with transcription regulation. Synaptic transmission and visual perception functions, with the particular involvement of the GABAergic pathway, were also significantly modulated. Numerous transcripts involved in cell cycle or cell proliferation, immune response, signal transduction, ion channel activity or calcium ion binding, tissue development and differentiation, female or male fertility or in several metabolic pathways were also affected after dioxin exposure. The transcriptional profile induced by TCDD treatment on human CD34+ cells strikingly reproduces the clinical and biological effects observed in individuals exposed to dioxin and in biological experimental systems.
Dioxin exposure of human CD34+ hemopoietic cells induces gene expression modulation that recapitulates its in vivo clinical and biological effects.
Specimen part, Treatment
View SamplesGlucocorticoids remain the most widely used class of anti-inflammatory and immunosuppressive agents. They act primarily by binding to the glucocorticoid receptor, resulting in direct and indirect effects on gene expression. The current understanding of glucocorticoid effects on transcription in human cells is based mostly on studies of cancer cell lines, immortalized cell lines, or highly mixed populations of primary cells (such as peripheral blood mononuclear cells). To advance the understanding of the transcriptome-wide effects of glucocorticoids on highly pure populations of primary human cells, we performed RNA-seq on nine such cell populations at two time points after in vitro exposure to methylprednisolone or vehicle. Overall design: Nine cell types were studied: four hematopoietic (circulating B cells, CD4+ T cells, monocytes, and neutrophils) and five non-hematopoietic (endothelial cells, fibroblasts, myoblasts, osteoblasts, and preadipocytes). Each cell type was obtained from a separate cohort of 4 unrelated healthy human donors (4 biological replicates per cell type: BR1 - BR4). Cells form each donor were independently cultured and exposed in vitro to glucocorticoid or vehicle. Non-hematopoietic cells were incubated until the early plateau phase of growth, then exposed to methylprednisolone or vehicle. Hematopoietic cells were collected from peripheral blood, purified by magnetic selection (negative selection for B cells, CD4+ T cells and neutrophils; positive selection for monocytes). Purified B cells, CD4+ T cells, and monocytes were incubated overnight, then exposed to methylprednisolone or vehicle. Purified neutrophils were cultured for 4 hours, then exposed to methylprednisolone or vehicle. Ethanol was used as a vehicle for methylprednisolone. Estimated final concentrations were 8500 mcg/L (22.7 mcM) for methylprednisolone and 0.07% (15.57 mM) for ethanol (vehicle). For each cell type, samples were collected at two time points after treatment with methylprednisolone or vehicle: 2 hours and 6 hours. Samples were collected into TRIzol reagent and frozen at -80°C prior to RNA extraction. RNA-seq data for all samples is made available in this GEO Series.
Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses.
Specimen part, Subject, Time
View SamplesMelanoma growth is driven by malignant melanoma initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member, ABCB5. ABCB5+ melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE-1 and are associated with CD31-negative vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5+ MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5+ tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced in a VEGFR-1-dependent manner expression of CD144 in ABCB5+ subpopulations that constitutively expressed VEGFR-1, but not in ABCB5- bulk populations that were predominantly VEGFR-1-negative. In vivo, melanomaspecific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5+ VM morphology and inhibited ABCB5+ VM-associated production of the secreted melanoma mitogen, laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by >90%). Our results demonstrate that VEGFR-1 function in MMIC regulates VM and associated laminin production, and show that this function represents one mechanism through which MMIC promote tumor growth.
VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth.
Specimen part
View SamplesLimited access to large samples and independent replication cohorts precludes genome-wide association (GWA) studies of rare but complex traits. To localize candidate genes in an on-going study utilizing family-based GWA, a novel exploratory analysis was first tested on 1,774 major histocompatibility complex single nucleotide polymorphisms (SNPs) in 240 DNA samples from 80 children with primary liver transplantation (LTx), and their biological parents. Genotyping was performed using the Illumina HumHap550k SNP BeadArray; the genotype calls for the 1813 SNPs in the MHC region are provided in the genotype_data.zip supplementary file linked to this series (see README file in the zip archive for more information).
Genetic variants in major histocompatibility complex-linked genes associate with pediatric liver transplant rejection.
No sample metadata fields
View Samples