We applied a 5''RNA-seq methodology to assess gene and differential isoform expression in striated muscle tissues extracted from adult wild-type mice. Overall design: 5''RNA-seq analysis of transcriptomes from mouse soleus, tibialis anterior (TA), diaphragm and left ventricle myocardial tissues. Three biological replicates per tissue were pooled into a single sequencing run. 5''RNA-seq methodology consists of enhanced sequencing of 5'' ends and computational assessment of changes at start-sites of genes.
Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.
Sex, Specimen part, Cell line, Subject
View SamplesThe precise mechanism and effects of antibiotics in host gene expression and immunomodulation in MRSA infection is unknown. Using a well characterized Methicillin Resistant Staphylococcus aureus (MRSA) isolate USA300 in a murine model of infection, we determined that linezolid and vancomycin induced differential production of bacterial toxins and host cytokines, differences in host gene expression, and differences in immunomodulators during MRSA bloodstream infection. A total of 35 A/J mice, categorized into seven groups (no infection; no infection with linezolid; no infection with vancomycin; 2 hour post-infection (hpi) S. aureus; 24 hpi S. aureus; 24 hpi S. aureus with linezolid; and 24 hpi S. aureus with vancomycin), were used in this study. Mice were injected with USA300 (6 x 106 CFU/g via i.p. route), then intravenously treated with linezolid (25 mg/kg) or vancomycin (25 mg/kg) at 2 hpi. Control and S. aureus infected mice were euthanized at each time point (2 h or 24h) following injection. Whole blood RNA was used for microarray; three cytokines and two S. aureus toxins [PantonValentine Leukocidin (PVL) and alpha hemolysin] were quantified in mouse serum by ELISA. S. aureus CFUs were significantly reduced in blood and kidney after linezolid or vancomycin treatment in S. aureus-infected mice. In vivo IL-1 in mouse serum was significantly reduced in both linezolid (p=0.001) and vancomycin (p=0.006) treated mice compared to untreated ones. IL-6 was significantly reduced only in linezolid treated (p<0.001) but not in vancomycin treated mice. However, another proinflammatory cytokine, TNF-, did not exhibit altered levels in either linezolid or vancomycin treated mice (p=0.3 and p=0.51 respectively). In vivo level of bacterial toxin, Panton-Valentine leukocidin, in mouse serum was significantly reduced only in linezolid treated mice (p=0.02) but not in vancomycin treated mice. There was no significant effect of either treatment in in vivo level of alpha hemolysin production. Unsupervised hierarchical clustering using the gene expression data from 35 microarrays revealed distinct clustering based on infection status and treatment group. Study of the antibiotic-specific difference in gene expression identified the number of genes uniquely expressed in response to S. aureus infection, infection with linezolid treatment, and infection with vancomycin treatment. Pathway associations study for the differentially expressed genes in each comparison group (Control vs. 24 h S. aureus infection, 24 h S. aureus infection vs. 24 h S. aureus linezolid, and 24 h S. aureus infection vs. 24 h S. aureus vancomycin) in mice using Kyoto Encyclopedia of Genes and Genomes (KEGG) identified toll-like receptor signaling pathway to be common to every comparison groups studied. Glycerolipid metabolism pathway was uniquely associated only with linezolid treatment comparison group. The findings of this study provide the evidence that protein synthesis inhibitor like linezolid does a better job in treating MRSA sepsis compared to cell wall acting antibiotics like vancomycin.
Host gene expression profiling and in vivo cytokine studies to characterize the role of linezolid and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) murine sepsis model.
No sample metadata fields
View SamplesUnderstanding the mechanism of low temperature (LT) adaptation is crucial to the development of cold-tolerant crops. To identify the genes involved in the development of LT tolerance in the crown of hexaploid wheat we examined the global changes in genes expression during cold-treatment using the Affymetrix Wheat Genome Chip.
Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.).
No sample metadata fields
View SamplesTropomodulins (Tmods) cap the pointed ends of actin filaments in erythroid and nonerythoid cell types. Targeted deletion of mouse Tmod3 leads to embryonic lethality at E14.5-E18.5, with anemia due to defects in definitive erythropoiesis in the fetal liver. BFU-E and CFU-E colony numbers are greatly reduced, indicating defects in progenitor populations. Flow-cytometry of fetal liver erythroblasts shows late stage populations are also decreased, including reduced percentages of enucleated cells. AnnexinV staining indicates increased apoptosis of Tmod3-/- erythroblasts, and cell cycle analysis reveals that there are more Ter119hi cells in S-phase in Tmod3-/- embryos. Notably, enucleating Tmod3-/- erythroblasts are still in the process of proliferation, suggesting impaired cell cycle exit during terminal differentiation. Tmod3-/- late erythroblasts often exhibit multi-lobular nuclear morphologies and aberrant F-actin assembly during enucleation. Furthermore, native erythroblastic island formation was impaired in Tmod3-/- fetal livers, with Tmod3 required in both erythroblasts and macrophages. In conclusion, disruption of Tmod3 leads to impaired definitive erythropoiesis, due to reduced progenitors, impaired erythroblastic island formation, and defective erythroblast cell cycle progression and enucleation. Tmod3-mediated actin remodeling may be required for erythroblast-macrophage adhesion, coordination of cell cycle with differentiation, and F-actin assembly and remodeling during erythroblast enucleation.
Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver.
No sample metadata fields
View SamplesMultiple myeloma is a fatal hematological malignancy. In order to develop effective therapeutic approaches, it is critical to understand the pathogenesis of myeloma. The Radl 5T model of multiple myeloma is a clinically relevant murine model where myeloma spontaneously occurs in aged, in-bred C57BlKalwRij mice and can be propagated by intravenous inoculation of 5T myeloma cells into mice of the same strain. Importantly inoculation of 5T myeloma cells into C57Bl6 mice does not result in myeloma, demonstrating that the bone marrow (BM) microenvironment of the C57BlKalwRij strain provides a unique and permissive milieu for myeloma development. We hypothesized that cells of the BM microenvironment may provide essential stimuli for the development of multiple myeloma in vivo. We aim to determine the differences in expression within the bone marrow of C57Bl/KalwRij mice.
Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease.
No sample metadata fields
View SamplesIt has been shown that inbred strains of mice exhibit variable susceptibility to S. aureus infection, but the specific genes responsible for this differential phenotype are unknown. Using ISHM to identify genomic regions associated with the phenotypes, we considered genes within those interval to be candidate genes and used the gene expression patterns of the genes contained in the region to determine whether the genes are differentially expressed between the 2 phenotypically different groups of mice.
Haplotype Association Mapping Identifies a Candidate Gene Region in Mice Infected With Staphylococcus aureus.
Time
View SamplesThe physiological responses to B cell receptors (BCR) and Toll-like receptors (TLRs) so vital to immunity are well known but the transcriptional signatures and regulatory mechanisms that initiate activation and release cells from quiescence remain unclear. Here, we show that BCR- or TLR-mediated activation of B cells involves a large shared transcriptional signature and a smaller subset of distinct signal-specific transcriptional responses. Signal-specific transcription is observable within 2 hours of ligand exposure; suggesting different modes of activation begin soon after ligand binding and long before the well-documented BCR and TLR-dependent physiological responses occur. Ligand-specific differences in regulatory mechanisms including RNA Pol II recruitment, activating (H3K4me3) and repressing (H3K27me3) histone marks, transcription factor binding sites in responsive gene promoters, and miRNA expression were observed. These results begin to define the transcriptional landscape of early B cell activation revealing more ligand-specific regulation and character than occurs much earlier than previously expected. Overall design: CD43- mouse resting B cells were stimulated with ligands against the B cell receptor and TLR4 (LPS). RNA-sequencing was performed to describe differential transcription and ChIP-sequencing was performed to describe regulatory mechanism responses.
Divergence of transcriptional landscape occurs early in B cell activation.
No sample metadata fields
View SamplesThe activation of NFkB pathway is commonly observed in many neurodegenerative disease and contributes to the disease pathogenesis. However, with hundreds of target genes expressed in the brain, the mechanism of NFkB signaling transduction pathway is bearly understood.
NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease.
Specimen part
View SamplesAged STAT1-/- female mice spontaneously develop ERa+ PR+ mammary tumors that exhibit strikingly similar hormone-sensitivity and -dependency as human ERa+ luminal breast cancers.
STAT1-deficient mice spontaneously develop estrogen receptor α-positive luminal mammary carcinomas.
No sample metadata fields
View SamplesNevirapine alone produces only mild hepatic hypertrophy in the rat. Single ip dose galactosamine produces transient hepatocellular apoptotic and oncotic cell death mimicking viral hepatitis with portal inflammatory infiltrate and biliary hypertrophy and hyperplasia. Damage is typically resolved within 7-10 days. However if rats are pretreated with nevirapine at specific doses for 7 days prior to the single galactosamine dose, bridging fibrosis is observed, 8 days after the single galactosamine dose is given.
Drug-induced Liver Fibrosis: Testing Nevirapine in a Viral-like Liver Setting Using Histopathology, MALDI IMS, and Gene Expression.
Sex, Specimen part
View Samples