Gene expression analysis of three sets of patient-derived T-ALL xenografted murine lines treated or not treated with Givinostat, to investigate the immediate anti-leukemic effects after 6 hours of in vivo treatment with this histone deacetylase inhibitor.
An immediate transcriptional signature associated with response to the histone deacetylase inhibitor Givinostat in T acute lymphoblastic leukemia xenografts.
Specimen part, Treatment
View SamplesThe foregut definitive endoderm is the precursor of many tissues including the liver, pancreas, thyroid, lungs, trachea and oesophagus. However, networks and pathways involved in the early development of the definitive endoderm of mammals are not well studied. To identify genes with potential roles in the early development of the foregut definitive endoderm in mouse embryos, we performed microarray analysis to compare the gene expression profile of foregut endoderm and non-endodermal tissues from early somite-stage mouse embryos.
Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part
View SamplesDevelopment of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head. Overall design: Total RNA obtained from FLAG-Lhx1 and FLAG-Lhx1 mutant embryoid bodies differentiated over 2 days with or without doxycycline treatment for 16 hours. There are three replicates per condition.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part, Subject
View SamplesDevelopment of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part
View SamplesOrganoid technologies provide an accessible system in which to examine the generation, self-organization,and 3-dimensional cellular interactions during development of the human cerebral cortex. However, oligodendrocytes, the myelinating glia of the central nervous system and third major neural cell type, are conspicuously absent from current protocols. Here we reproducibly generate human oligodendrocytes and myelin in pluripotent stem cell-derived cortical spheroids. Transcriptional and immunohistochemical analysis of the spheroids demonstrates molecular features consistent with maturing human oligodendrocytes within 14 weeks of culture, including expression of MyRF, PLP1, and MBP proteins. Histological analysis by electron microscopy shows initial wrapping of human neuronal axons with myelin by 20 weeks and maturation to compact myelin by 30 weeks in culture. Treatment of spheroids with previously identified promyelinating drugs enhances the rate and extent of human oligodendrocyte generation and myelination. Furthermore, generation of spheroids from patients with a severe genetic myelin disorder, Pelizaeus-Merzbacher disease, demonstrates the ability to recapitulate human disease phenotypes, which were in turn improved with both pharmacologic and CRISPR-based approaches. Collectively, these 3-dimensional, multi-lineage cortical spheroids provide a versatile platform to observe and perturb the complex cellular interactions that occur during developmental myelination of the brain and offer new opportunities for disease modeling and therapeutic development in human tissue. Overall design: RNAseq profiles comparing neuro-cortical spheroids and oligo-cortical spheroids
Induction of myelinating oligodendrocytes in human cortical spheroids.
No sample metadata fields
View SamplesWe studied the in vitro and in vivo efficacy of the HDAC inhibitor Givinostat/ITF2357 in BCP-ALL with CRLF2 rearrangements. We used BCP-ALL CRLF2- rearranged MHH-CALL4 and MUTZ5 cell lines as well as blasts from CRLF2 rearranged BCP-ALL patients and patients derived xenograft samples. We conclude that Givinostat may represent a novel and effective tool, in combination with current chemotherapy, to treat this subsets of ALL with poor prognosis and chemotherapy-related toxicity.
The histone deacetylase inhibitor givinostat (ITF2357) exhibits potent anti-tumor activity against CRLF2-rearranged BCP-ALL.
Specimen part, Treatment
View SamplesHuntingtons disease (HD) involves marked early neurodegeneration in the striatum whereas the cerebellum is relatively spared despite the ubiquitous expression of full-length mutant huntingtin, implying that inherent tissue-specific differences determine susceptibility to the HD CAG mutation. To understand this tissue specificity, we compared early mutant huntingtin-induced gene expression changes in striatum to those in cerebellum in young Hdh CAG knock-in mice, prior to onset of evident pathological alterations. Endogenous levels of full-length mutant huntingtin caused qualitatively similar, but quantitatively different gene expression changes in the two brain regions. Importantly, the quantitatively different responses in striatum and cerebellum in mutant mice were well accounted for by the intrinsic molecular differences in gene expression between striatum and cerebellum in wild-type animals. Tissue-specific gene expression changes in response to the HD mutation, therefore, appear to reflect the different inherent capacities of these tissues to buffer qualitatively similar effects of mutant huntingtin. These findings highlight a role for intrinsic quantitative tissue differences in contributing to HD pathogenesis, and likely to other neurodegenerative disorders exhibiting tissue-specificity, thereby guiding the search for effective therapeutic interventions.
Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative.
Specimen part
View SamplesISCOM vaccines induce a balanced Th1/Th2 response and cytotoxic T lymphocytes. The adjuvant component, ISCOM-Matrix, consists of purified saponin fractions, cholesterol and phospholipids. The mode of action for the ISCOM-Matrix is known to some extent but still we lack knowledge of important segments in initiation of the immune response. The study was performed to analyze the early transcriptional responses to the ISCOM-Matrix alone, without the use of co-administered antigen. Matrix M (AbISCO 100) was given as intramuscular injection and after 24 hours the pigs was sacrificed for gene expression analysis, performed for the injection site and the draining lymph node.
Global transcriptional response to ISCOM-Matrix adjuvant at the site of administration and in the draining lymph node early after intramuscular injection in pigs.
Sex, Age, Specimen part, Treatment
View SamplesCancer-related fatigue is one of the most frequent complaints among breast cancer survivors, with a major negative impact on general life. However, the etiology behind this syndrome is still unraveled. Gene expression analysis was performed on whole blood samples from breast cancer survivors classified as either fatigued or non-fatigued at two consecutive time points. The analysis identified several gene sets concerning plasma and B cell pathways as different between the fatigue and non-fatigue groups, suggesting that a deregulation in these pathways might underlie the fatigue syndrome. The fatigue group also showed a higher mean level of leucocytes, lymphocytes and neutrophiles compared with the non-fatigue group, thus further implicating the immune system in the biology behind the fatigue syndrome.
Alterations of gene expression in blood cells associated with chronic fatigue in breast cancer survivors.
Specimen part, Subject
View Samples