ISCOM vaccines induce a balanced Th1/Th2 response and cytotoxic T lymphocytes. The adjuvant component, ISCOM-Matrix, consists of purified saponin fractions, cholesterol and phospholipids. The mode of action for the ISCOM-Matrix is known to some extent but still we lack knowledge of important segments in initiation of the immune response. The study was performed to analyze the early transcriptional responses to the ISCOM-Matrix alone, without the use of co-administered antigen. Matrix M (AbISCO 100) was given as intramuscular injection and after 24 hours the pigs was sacrificed for gene expression analysis, performed for the injection site and the draining lymph node.
Global transcriptional response to ISCOM-Matrix adjuvant at the site of administration and in the draining lymph node early after intramuscular injection in pigs.
Sex, Age, Specimen part, Treatment
View SamplesCancer-related fatigue is one of the most frequent complaints among breast cancer survivors, with a major negative impact on general life. However, the etiology behind this syndrome is still unraveled. Gene expression analysis was performed on whole blood samples from breast cancer survivors classified as either fatigued or non-fatigued at two consecutive time points. The analysis identified several gene sets concerning plasma and B cell pathways as different between the fatigue and non-fatigue groups, suggesting that a deregulation in these pathways might underlie the fatigue syndrome. The fatigue group also showed a higher mean level of leucocytes, lymphocytes and neutrophiles compared with the non-fatigue group, thus further implicating the immune system in the biology behind the fatigue syndrome.
Alterations of gene expression in blood cells associated with chronic fatigue in breast cancer survivors.
Specimen part, Subject
View SamplesEts homologous factor (EHF) is an Ets family transcription factor expressed in many epithelial cell types including those lining the respiratory system. Disruption of the airway epithelium is central to many lung diseases, and a network of transcription factors coordinates its normal function. EHF can act as a transcriptional activator or a repressor, though its targets in lung epithelial cells are largely uncharacterized. RNA-seq after EHF depletion or overexpression showed significant alterations in the expression of genes involved in response to wounding. EHF knockdown also targeted genes in pathways of epithelial development and differentiation and locomotory behavior. Overall design: mRNA profiles from Calu-3 cells treated with negative control (NC) or EHF siRNA, in quintuplicate. mRNA profiles from 3 pcDNA (empty vector control) clones and 3 pcDNA-EHF overexpression A549 clones, 3-4 replicates each.
Ets homologous factor regulates pathways controlling response to injury in airway epithelial cells.
No sample metadata fields
View SamplesHuntingtons disease (HD) involves marked early neurodegeneration in the striatum whereas the cerebellum is relatively spared despite the ubiquitous expression of full-length mutant huntingtin, implying that inherent tissue-specific differences determine susceptibility to the HD CAG mutation. To understand this tissue specificity, we compared early mutant huntingtin-induced gene expression changes in striatum to those in cerebellum in young Hdh CAG knock-in mice, prior to onset of evident pathological alterations. Endogenous levels of full-length mutant huntingtin caused qualitatively similar, but quantitatively different gene expression changes in the two brain regions. Importantly, the quantitatively different responses in striatum and cerebellum in mutant mice were well accounted for by the intrinsic molecular differences in gene expression between striatum and cerebellum in wild-type animals. Tissue-specific gene expression changes in response to the HD mutation, therefore, appear to reflect the different inherent capacities of these tissues to buffer qualitatively similar effects of mutant huntingtin. These findings highlight a role for intrinsic quantitative tissue differences in contributing to HD pathogenesis, and likely to other neurodegenerative disorders exhibiting tissue-specificity, thereby guiding the search for effective therapeutic interventions.
Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative.
Specimen part
View SamplesGene expression analysis of three sets of patient-derived T-ALL xenografted murine lines treated or not treated with Givinostat, to investigate the immediate anti-leukemic effects after 6 hours of in vivo treatment with this histone deacetylase inhibitor.
An immediate transcriptional signature associated with response to the histone deacetylase inhibitor Givinostat in T acute lymphoblastic leukemia xenografts.
Specimen part, Treatment
View SamplesThe foregut definitive endoderm is the precursor of many tissues including the liver, pancreas, thyroid, lungs, trachea and oesophagus. However, networks and pathways involved in the early development of the definitive endoderm of mammals are not well studied. To identify genes with potential roles in the early development of the foregut definitive endoderm in mouse embryos, we performed microarray analysis to compare the gene expression profile of foregut endoderm and non-endodermal tissues from early somite-stage mouse embryos.
Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part
View SamplesDevelopment of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head. Overall design: Total RNA obtained from FLAG-Lhx1 and FLAG-Lhx1 mutant embryoid bodies differentiated over 2 days with or without doxycycline treatment for 16 hours. There are three replicates per condition.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part, Subject
View SamplesDevelopment of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part
View SamplesExtracorporeal photochemotherapy (ECP) is widely used to treat cutaneous T cell lymphoma, graft versus host disease and allografted organ rejection. Its clinical and experimental efficacy in both cancer immunotherapy and autoreactive disorders suggests a novel mechanism. This study reveals that ECP induces a high percentage of processed monocytes to enter the dendritic antigen presenting cell (DC) differentiation pathway, as determined by expression of relevant genes. The resulting DC are capable of processing and presentation of exogenous antigen and are largely maturationally synchronized, as assessed by the level of expression of co-stimulatory surface molecules. Principal component analysis of the ECP-induced monocyte transcriptome indicates that activation or suppression of more than 3500 genes produces a reproducible distinctive molecular signature. Pathway analysis suggests that DC maturation may be triggered by transient adherence of passaged monocytes to plasma proteins coating the ECP plastic ultraviolet exposure plate. Co-incubation with lymphocytes, simultaneously induced by ECP to undergo apoptosis, may accelerate conversion of monocytes to DC. The efficiency with which ECP induces new functional DC supports the possibility that these cells participate prominently in the clinical successes of the treatment. ECP may offer a practical source of DC for use in a spectrum of immunotherapeutic trials.
Rapid generation of maturationally synchronized human dendritic cells: contribution to the clinical efficacy of extracorporeal photochemotherapy.
Disease, Disease stage
View Samples