The present work aimed to identify reference genes for RT-qPCR studies of hypoxia in cervical cancer. From 422 candidate reference genes selected from the literature, we used Illumina array-based expression profiles to identify 182 genes not affected by hypoxia treatment in eight cervical cancer cell lines or correlated with the hypoxia-associated dynamic contrast-enhanced magnetic resonance imaging parameter ABrix in 42 patients. Among these genes, we selected nine candidates (CHCHD1, GNB2L1, IPO8, LASP1, RPL27A, RPS12, SOD1, SRSF9, TMBIM6) that were not associated with tumor volume, stage, lymph node involvement or disease progression in array data of 150 patients, for further testing by RT-qPCR. geNorm and NormFinder analyses of RT-qPCR data of 74 patients identified CHCHD1, SRSF9 and TMBIM6 as the most suitable set of reference genes, with stable expression both overall and across patient subgroups with different hypoxia status (ABrix) and clinical parameters. The suitability of the three candidates as reference genes were validated in studies of the hypoxia-induced genes DDIT3, ERO1A, and STC2. After normalizing with CHCHD1, SRSF9 and TMBIM6, the RT-qPCR data of these genes showed a significant correlation with Illumina expression (P<0.001, n=74) and ABrix (P<0.05, n=32), and the STC2 data were associated with clinical outcome, in accordance with the Illumina data. Thus, CHCHD1, SRSF9 and TMBIM6 seem to be suitable reference genes for studying hypoxia-related gene expression in cervical cancer samples by RT-qPCR. STC2 might be a useful prognostic hypoxia biomarker in cervical cancer that warrants further investigation.
Identification and Validation of Reference Genes for RT-qPCR Studies of Hypoxia in Squamous Cervical Cancer Patients.
Specimen part, Cell line
View SamplesEmerging biomarkers based on medical images and molecular characterization of tumor biopsies open up for combining the two disciplines and exploiting their synergy in treatment planning. We compared pretreatment classification of cervical cancer patients by two previously validated imaging- and gene-based hypoxia biomarkers, evaluated the influence of intratumor heterogeneity, and investigated the benefit of combining them in prediction of treatment failure. The imaging-based biomarker was hypoxic fraction, determined from diagnostic dynamic contrast enhanced (DCE)-MR images. The gene-based biomarker was a hypoxia gene expression signature determined from tumor biopsies. Paired data were available for 118 patients. Intratumor heterogeneity was assessed by variance analysis of MR images and multiple biopsies from the same tumor. The two biomarkers were combined using a dimension-reduction procedure. The biomarkers classified 75% of the tumors with the same hypoxia status. Both intratumor heterogeneity and distribution pattern of hypoxia from imaging were unrelated to inconsistent classification by the two biomarkers, and the hypoxia status of the slice covering the biopsy region was representative of the whole tumor. Hypoxia by genes was independent on tumor cell fraction and showed minor heterogeneity across multiple biopsies in 9 tumors. This suggested that the two biomarkers could contain complementary biological information. Combination of the biomarkers into a composite score led to improved prediction of treatment failure (HR:7.3) compared to imaging (HR:3.8) and genes (HR:3.0) and prognostic impact in multivariate analysis with clinical variables. In conclusion, combining imaging- and gene-based biomarkers enables more precise and informative assessment of hypoxia-related treatment resistance in cervical cancer, independent of intratumor heterogeneity.
Combining imaging- and gene-based hypoxia biomarkers in cervical cancer improves prediction of chemoradiotherapy failure independent of intratumour heterogeneity.
Specimen part
View SamplesWe have previously identified a prognostic 31-gene expression signature in locally advanced cervical cancer that is associated with tumor hypoxia and reflected by the dynamic contrast enhanced magnetic resonance (DCE-MR) image parameter ABrix. To bring the signature closer to clinical use, we here aimed to construct a classifier with key signature genes that retained an association to ABrix and separated the patients into groups with different hypoxia status and chemoradiotherapy outcome.
Integrative Analysis of DCE-MRI and Gene Expression Profiles in Construction of a Gene Classifier for Assessment of Hypoxia-Related Risk of Chemoradiotherapy Failure in Cervical Cancer.
Specimen part, Cell line
View SamplesTumor hypoxia levels range from mild to severe and have different biological and therapeutical consequences, but are not easily assessable in patients. We present a method based on diagnostic dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) that visualizes a continuous range of hypoxia levels in tumors of cervical cancer patients. Hypoxia images were generated using an established approach based on pixel-wise combination of the DCE-MRI parameters e and Ktrans, reflecting oxygen consumption and supply, respectively. An algorithm to retrieve hypoxia levels from the images was developed and validated in 28 xenograft tumors, by comparing the MRI-defined levels with hypoxia levels derived from pimonidazole stained histological sections. We further established an indicator of hypoxia levels in patient tumors based on expression of nine hypoxia responsive genes. A strong correlation was found between these indicator values and the MRI-defined hypoxia levels in 63 patients. Chemoradiotherapy outcome of 74 patients was most strongly predicted by moderate hypoxia levels, whereas more severe or milder levels were less predictive. By combining gene expression profiles and MRI-defined hypoxia levels in cancer hallmark analysis, we identified a distribution of levels associated with each hallmark; oxidative phosphorylation and G2/M checkpoint were associated with moderate hypoxia, and epithelial-to-mesenchymal transition and inflammatory responses with significantly more severe levels. At the mildest levels, interferon response hallmarks, together with stabilization of HIF1A protein by immunohistochemistry, appearred significant. Thus, our method visualizes the distribution of hypoxia levels within patient tumors and has potential to distinguish levels of different prognostic and biological significance.
MRI Distinguishes Tumor Hypoxia Levels of Different Prognostic and Biological Significance in Cervical Cancer.
Cell line, Treatment
View SamplesGenome-wide gene expression was measured in peripheral blood mononuclear cells (PBMCs) from patients with cystic fibrosis (CF) after treatment in vitro with the flagellin protein fliC, and/or synthetic peptide IDR-1018 to assess patterns of gene expression. The patterns of gene expression suggest that CF cells have a hyperinflammatory phenotype including dysfunctional autophagy processes. The synthetic peptide IDR-1018 attentuates this hyperinflammatory phenotype. Overall design: Total RNA was obtained from PBMCs obtained from CF patients after treatment with the fliC flagellin protein (that is known to play a role in CF lung inflammation), and/or the peptide IDR-1018 that has anti-inflammatory properties. Comparison of genes and pathways affected by these treatments indicated the role of autophagy process in CF disease.
Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells.
Specimen part, Treatment, Subject
View SamplesSynthetic, innate defense regulators (IDR) peptides, designed based on natural host defenses peptides, have enhanced immunomodulatory activities and reduced toxicity leading to protection in infection and inflammation models that is dependent on macrophages/monocytes. Here we measured the effect of IDR-1018 on macrophage gene expression during differentiation. Differentiation in the presence of IDR-1018 induced a unique signature of immune responses suggesting that IDR-1018 drives macrophage differentiation towards an intermediate M1-M2 state, enhancing anti-inflammatory functions while maintaining certain pro-inflammatory activities important to the resolution of infection. Overall design: RNA-seq was performed using the Illumina Genome Analyzer IIx platform. Monocytes were isolated from 3 healthy donors, and left unstimulated or stimulated for 4 hours with 20 µg/ml IDR-1018. For library preparation, 500 ng of total RNA was processed according to the Illumina TruSeq RNA sample preparation guide (Illumina catalogue number FC-122-1002). Briefly, mRNA was purified using poly-dT beads, followed by synthesis of the first and second cDNA strands, end repair addition of an poly-A overhang, and ligation of adapters and unique barcodes, as per the manufacturer’s instructions. DNA enrichment was carried out via a 15-cycle PCR. Following quantification, 8 pM of dsDNA was used for cluster generation on a CBOT instrument (Illumina, San Diego, CA). RNA sequencing was done on a GAIIx instrument (Illumina), performed as a single read run with 51 amplification cycles. Data processing was carried out in house, using CASAVA to convert raw data and demultiplex to FASTQ sequence files. Reads were aligned to the reference genome using TOPHAT, and then mapped to genes using the Bioconductor package GenomeRanges.
Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation.
Specimen part, Disease, Treatment, Subject
View SamplesBackground: Sepsis involves aberrant immune responses to infection, but the exact nature of this immune dysfunction remains poorly defined. Bacterial endotoxins like lipopolysaccharide (LPS) are potent inducers of inflammation, which has been associated with the pathophysiology of sepsis, but repeated exposure can also induce a suppressive effect known as endotoxin tolerance or cellular reprogramming. It has been proposed that endotoxin tolerance might be associated with the immunosuppressive state that was primarily observed during late-stage sepsis. However, this relationship remains poorly characterised. Here we clarify the underlying mechanisms and timing of immune dysfunction in sepsis. Methods: We defined a gene expression signature characteristic of endotoxin tolerance. Gene-set test approaches were used to correlate this signature with early sepsis, both newly and retrospectively analysing microarrays from 593 patients in 11 cohorts. Then we recruited a unique cohort of possible sepsis patients at first clinical presentation in an independent blinded controlled observational study to determine whether this signature was associated with the development of confirmed sepsis and organ dysfunction. Findings: All sepsis patients presented an expression profile strongly associated with the endotoxin tolerance signature (p < 0.01; AUC 96.1%). Importantly, this signature further differentiated between suspected sepsis patients who did, or did not, go on to develop confirmed sepsis, and predicted the development of organ dysfunction. Interpretation: Our data support an updated model of sepsis pathogenesis in which endotoxin tolerance-mediated immune dysfunction (cellular reprogramming) is present throughout the clinical course of disease and related to disease severity. Thus endotoxin tolerance might offer new insights guiding the development of new therapies and diagnostics for early sepsis. Overall design: For the RNA-Seq study reported here, 73 patients were recruited with deferred consent at the time of first examination in an emergency ward based on the opinion of physicians that there was a potential for the patient''s condition to develop into sepsis. These were retrospectively divided into groups based on clinical features and compared to 11 non-urgent surgical controls.
An Endotoxin Tolerance Signature Predicts Sepsis and Organ Dysfunction at Initial Clinical Presentation.
No sample metadata fields
View SamplesBackground: Dendritic cells (DCs) are critical for regulating CD4 and CD8 T cell immunity, controlling Th1, Th2, and Th17 bias, generating inducible Tregs, and inducing tolerance. Multiple DC subsets have been identified in the mouse that are thought to have evolved to control these different immune outcomes. However, how these subsets differentially respond to inflammatory and/or tolerogenic signals in order to accomplish their divergent functionality remains unclear. Results: We analysed the responses of murine, splenic CD8 and CD11b DC subsets to in-vivo stimulation with lipopolysaccharide using RNA-Seq and systems biology approaches and observed responses are highly subset-specific. We reanalysed multiple datasets from the literature and show that these subset responses are obscured when analysing signaling at the population level. We show that the subset-specificity is due to the unique regulation of distinct TLR4 pathway modulators that ‘fine-tune’ a common TLR4 cascade rather and not due to major differences in signaling pathways or transcription factors. Conclusions: We propose the Pathway Modulation Model wherein common signaling pathways are regulated by unique sets of modulators allowing for distinct immune responses in closely related DC subsets. We extend these observations using analagous datasets from the literature and show that our model provides a global mechanism for generating cell subset-specific signaling in multiple subpopulations in mouse and man. Overall design: Splenic CD8 and CD11b DC subsets from LPS stimulated (10 pooled animals) and Control (5 pooled animals) mice were analysed by RNA-Seq.
A systems biology approach to the analysis of subset-specific responses to lipopolysaccharide in dendritic cells.
Specimen part, Cell line, Subject, Time
View SamplesGene knockdown of PBK led to decreased proliferation and sphere formation in the GSC cultures. Treatment of cells with different concentrations of HI-TOPK-032 almost completely abolished growth and proliferation and elicited a large increase in apoptosis
Targeting PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo.
Specimen part, Cell line
View Samples