Single-cell RNA-seq (10X Genomics Chromium) to profile of cardiac progenitor cells, comparing the transcriptomes of diploid and tetraploid cardiac progenitor cells Overall design: Transcriptional profiling of diploid and tetraploid CPCs by scRNA-Seq approaches using 10X Genomics Chromium
Cardiac interstitial tetraploid cells can escape replicative senescence in rodents but not large mammals.
Sex, Specimen part, Cell line, Subject
View SamplesRenal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e. distal convoluted tubule (DCT) and connecting tubule (CNT) and, the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.
Molecular clock is involved in predictive circadian adjustment of renal function.
Sex, Specimen part
View SamplesThe circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question we performed transcriptomic analysis in mice with inducible and conditional ablation of the circadian clock system in the renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport. In parallel, kidneys from Bmal1lox/lox/Pax8-rtTA/LC1 mice exhibited a significant decrease in the NAD+/NADH ratio suggesting an increased anaerobic glycolysis and/or decreased mitochondrial function. In-depth analysis of two selected pathways revealed (i) a significant increase in plasma urea levels correlating with increased renal arginase 2 (Arg2) activity, hyperargininemia and increase of the kidney arginine content; (ii) a significantly increased plasma creatinine concentration and reduced capacity of the kidney to secrete anionic drugs (furosemide), paralleled by a ~80% decrease in the expression levels of organic anion transporter OAT3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at both the intra-renal and systemic levels and are involved in drug disposition. Overall design: Mice with a specific ablation of the Arntl gene encoding BMAL1 in the renal tubular cells were compared to wild-type littermate at ZT4 and ZT16 (ZT – Zeitgeber time units; ZT0 is the time of light on and ZT12 is the time of light off).
Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition.
Specimen part, Subject, Time
View SamplesExpression profiles at various time points after surgical intervention for pressure-overload induced cardiac hypertrophy and failure.
Small proline-rich protein 1A is a gp130 pathway- and stress-inducible cardioprotective protein.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesWe have used microarrays to identify genes expressed and required for the second mitotic wave (SMW) during eye development. Eye discs expressing Spitz under the control of GMR Gal4 have no SMW as Spitz promotes G1 arrest, ectopic differentiation also occures. To control for the ectopic differentiation, Spi expressing eye antennal discs were compared to eye antennal discs expressing activated RasV12. In discs expresseding RasV12 under the control of GMRGal4 the SMW takes place normally prior to any ectopic differentiation.
Spitz from the retina regulates genes transcribed in the second mitotic wave, peripodial epithelium, glia and plasmatocytes of the Drosophila eye imaginal disc.
No sample metadata fields
View SamplesCompetition between ADAR and RNAi pathways for an extensive class of RNA targets.
Competition between ADAR and RNAi pathways for an extensive class of RNA targets.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Establishment of leukemia inhibitory factor (LIF)-independent iPS cells with potentiated Oct4.
Specimen part
View SamplesMicroarray analysis of mRNARNA was prepared from ESCs (CGR8 and CJ7), MEFs, and iPSCs with a PureLink RNA Mini Kit (Life Technologies). Initial sample quality control was performed with a Nanodrop 8000 (Thermo Scientific). RNA samples with an optical density (OD) 260/280 ratio and an OD 260/230 ratio of 1.8 or higher were used. Samples with an RNA Integrity Number of 7.5 or greater measured with a LabChip Caliper GX (Perkin Elmer) were applied to an Illumina TotalPrep-96 RNA Amplification Kit (Life Technologies) to generate biotinylated and amplified RNA. With this kit, 300 ng of total RNA was first processed in a reverse transcription reaction. The cDNA then underwent second-strand synthesis and cleanup to serve as a template for in vitro transcription, which generated biotinylated antisense RNA copies of each mRNA. Samples went through another round of quality control with the Nanodrop 8000 and were applied to Illumina MouseWG-6 v2.0 Beadchips (#BD-201-0202). After overnight hybridization, the Beadchips were washed, stained, and scanned using an Illumina iScan Beadarray Reader. The obtained data were analyzed with an Illumina Genome Studio.
Establishment of leukemia inhibitory factor (LIF)-independent iPS cells with potentiated Oct4.
Specimen part
View SamplesStudies have reported opposing effects of high-fat diet and mechanical stimulation on lineage commitment of the bone marrow stem cells. Yet, how the bone marrow modulates its gene expression in response to the combined effects of mechanical loading and a high-fat diet has not yet been addressed. We investigated whether early-life voluntary physical activity can modulate the effects of a high-fat diet on body composition, bone phenotype and bone marrow gene expression in male Sprague Dawley rats. We show that early-life high-fat diet positively affected body weight, total fat percentage and bone mass indices. In the bone marrow, early-life high-fat diet resulted in adipocyte hypertrophy and a pro-inflammatory and pro-adipogenic gene expression profile. Crucially, the bone marrow of the rats that undertook wheel exercise while on a high-fat diet retained a memory of the early-life exercise. This memory lasted at least 60 days after the cessation of the voluntary exercise and was manifest by: 1) the bone marrow adipocyte size of the exercised rats not exhibiting hypertrophy; and 2) genes associated with mature adipocyte function being down-regulated. Our results are consistent with the marrow adipose tissue having a unique and long-lasting response to high-fat feeding in the presence or absence of exercise. Overall design: Eighty male SD rats were randomised at weaning into : chow-fed group (C-SED) or a high-fat fed group. The high-fat fed group was further divided into three sub-groups: the high-fat sedentary (HF-SED) group, the high-fat late-exercise (HF-LEX) group, and the high-fat early-exercise (HF-EEX) group. At day 120-123, the animals were culled and total RNA was extracted from the bone marrow of the femur. The RNA was sequenced using Illumina Hiseq4000 technology. Differential gene expression analysis was carried out using Tuxedo suite of bioinformatic tools.
A Memory of Early Life Physical Activity Is Retained in Bone Marrow of Male Rats Fed a High-Fat Diet.
No sample metadata fields
View SamplesWe prepared small RNA libraries from 29 tumor/normal pairs of human cervical tissue samples. Analysis of the resulting sequences (42 million in total) defined 64 new human microRNA (miRNA) genes. Both arms of the hairpin precursor were observed in twenty-three of the newly identified miRNA candidates. We tested several computational approaches for analysis of class differences between high throughput sequencing datasets, and describe a novel application of log linear model that has provided the most datasets, and describe a novel application of log linear model that has provided the most effective analysis for this data. This method resulted in the identification of 67 miRNAs that were differentially-expressed between the tumor and normal samples at a false discovery rate less than 0.001. Overall design: A total of 29 tumor/normal pairs of human cervical tissue samples were analyzed. Two samples (G699N_2 and G761T_2) were performed in duplicates. No Fastq files for GSM532871 to GSM532889, GSM532929, and GSM532930. Sequence files are provided as text files for these 22 Sample records in GSE20592_RAW.tar. 38 samples with quality scores are available from SRA as SRP002/SRP002326 (see Supplementary file below).
Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls.
No sample metadata fields
View Samples