Immunodeficient mouse models have been valuable for studies of human hematopoiesis, but high-fidelity recapitulation of erythropoiesis in most xenograft recipients remains elusive. Recently developed immunodeficient and Kit mutant mice, however, have provided a suitable background to achieve higher-level human erythropoiesis after long-term hematopoietic engraftment. While there has been some characterization of human erythropoiesis in these models, a comprehensive analysis of various developmental stages has not yet been reported. Here, we have utilized cell surface phenotypes, morphologic analyses, and molecular studies to fully characterize human erythropoiesis from multiple developmental stages in immunodeficient and Kit mutant mouse models following long-term hematopoietic stem and progenitor cell engraftment. We show that human erythropoiesis in such models demonstrates complete maturation and enucleation, as well as developmentally appropriate globin gene expression. These results provide a framework for future studies to utilize this model system for interrogating disorders affecting human erythropoiesis and for developing improved therapeutic approaches. Overall design: (mRNA-seq) RNA-seq of human CD235a+ cells isolated 14-16 weeks post-implantation from mouse bone marrow were performed for three biological replicates each of mice xenograted with adult bone marrow-derived human CD34+ cells and cord blood-derived CD34+ cells.
Developmentally-faithful and effective human erythropoiesis in immunodeficient and Kit mutant mice.
Specimen part, Subject
View SamplesATFS-1 has been shown to regulate transcription of mitochondrial chaperone genes such as mtHsp70/hsp-6 and hsp-60 in response to mitocondrial stress. To identify the entire ATFS-1-mediated response, we compared the transcript profiles from wild-type and atfs-1(tm4525) worms raised in the absence and presence of mitochondrial stress.
Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation.
Specimen part
View SamplesLRF, which is encoded by the ZBTB7A gene and formerly known as POKEMON (POK erythroid myeloid ontogenic factor), was originally identified as a PLZF (promyelocytic leukemia zinc finger) homologue interacting with BCL6 (B-cell lymphoma 6). LRF is a transcription factor that is broadly expressed in hematopoietic lineage cells, but its expression is particularly high in erythroblasts and germinal center (GC) B-cells. The goal of this study is to assess the effect of LRF loss on the LT-HSC transcriptome. Nine days after injection of adult mice with polyinosinic polycytidylic acid (pIpc) to activate Cre, total RNAs were isolated from double-sorted LT-HSCs from LRF Flox/+ Mx1-Cre+ and LRF Flox/Flox Mx1-Cre+ mice and processed for microarray analysis.
LRF-mediated Dll4 repression in erythroblasts is necessary for hematopoietic stem cell maintenance.
Age, Specimen part, Time
View SamplesGene expression profiling of normal hematopoietic cell subpopulations
Gene expression signatures in childhood acute leukemias are largely unique and distinct from those of normal tissues and other malignancies.
Specimen part
View SamplesAndrogen receptor (AR) is a ligand-dependent transcription factor that plays a key role in the onset and progression of prostate cancer. We investigated AR-induced gene expression in prostate cancer cells LNCaP and abl by transfecting siAR / siControl or treating cells with androgen (DHT) over a time course.
Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer.
No sample metadata fields
View SamplesG1E cells infected with control (HMD empty vector), human GATA1, or human GATA1 mutant cDNA Overall design: 3 Biological replicates per condition for RNA-seq
Impaired human hematopoiesis due to a cryptic intronic <i>GATA1</i> splicing mutation.
Cell line, Subject
View SamplesWe measured gene expression across the whole genome in a panel of lines selected for a wing shape trait (angular offset). The lines were created in separate experiments, originating from two widely separated populations, and including multiple replicates of one population, but all were created using the same selection regime and trait. Here we evaluate the data with two objectives: 1) to identify candidate wing shape genes for future testing and validation, and 2) to assess variation among lines in the outcome of identical selection regimes
Microarray analysis of replicate populations selected against a wing-shape correlation in Drosophila melanogaster.
No sample metadata fields
View SamplesThe hormone prolactin is implicated in the pathogenesis of breast cancer, and a subset of prolactin-induced gene expression is mediated by HDAC6 activity.
HDAC6 Deacetylates HMGN2 to Regulate Stat5a Activity and Breast Cancer Growth.
Sex, Specimen part, Cell line
View SamplesMethods: CaMKIIa-creERT2 (Erdmann et al., 2007) and Dicer1f/f (Harfe et al., 2005) were crossed to produce inducible forebrain-restricted Dicer1 knockout mice (Dicer-ifKO) mice. Hippocampal mRNA profiles of 3-month-old wild-type (WT) and (Dicer-ifKO) mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 2500. Each sample included total RNA isolated from the hippocampus of 3 mice. In total, 12 mice per genotype were used. The sequence reads that passed quality filters were mapped to reference genome (GRCm38/mm10) using Bowtie 2 (2.0.5) and TopHat (2.0.6). SAM/BAM files were further processed with Samtools (0.1.18). Read count quantitations were obtained using Seqmonk (0.26.0). Normalization of read counts and differential expression analysis between genotypes was carried out using DESeq2 R package from Bioconductor (Release 2.13). qRT–PCR validation was performed using SYBR Green assays. Results: We mapped about 13-14 million sequence reads per sample to the mouse genome (build GRCm38/mm10) and quantified 76,938 annotated transcripts. DESeq2 R package was used to normalize the counts and perform the differential expression. Differential analysis output was filtered by FDR threshold (padj < 0.1). This approach led us to identify 641 gene isoforms, corresponding to 314 genes that were differentially regulated in the mouse hippocampus upon Dicer ablation. Conclusions: We extend here the characterization of inducible forebrain-restricted Dicer1 mutants confirming the initial memory improvement. Moreover, we describe several novel phenotypes associated with early Dicer loss in the mature brain including an exacerbated response to seizures, increased CA1 neuron excitability, a pronounced weight gain and enhanced induction of immediate early genes (IEGs) in relevant neuronal nuclei. To identify candidate genes that could explain these phenotypes, we conducted two complementary genomic screens for the miRNAs primarily affected and their targets. Overall, our results explain both the initial and late consequences of Dicer loss in excitatory neurons and indicate that Dicer and the miRNA system play a critical role regulating neuronal homeostasis and responsiveness. Overall design: Hippocampal mRNA profiles of 3-month-old wild-type (WT) and Dicer-ifKO (3 weeks upon tamoxifen administration) male mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 2500. Each sample included total RNA isolated from the hippocampus of 3 mice. In total, 12 mice per genotype were used.
Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness.
No sample metadata fields
View SamplesMultipotent and pluripotent stem cells have significant potential as sources for cell replacement therapies. However, the low yield and quality of in vitro differentiated cells produced from various stem cell sources presents a significant limitation for therapeutic applications. The most mature use of these stem cell products is in the field of transfusion medicine, where stem cell-derived red blood cells (RBCs) have clinically-proven potential as alternative transfusion products. To improve upon current approaches for RBC production, we used insight from both common and rare human genetic variation of blood counts to focus on the SH2B3 gene. By producing loss of function of SH2B3 using targeted knockdown and genome editing approaches in human hematopoietic stem and progenitor cells, as well as human pluripotent stem cells, we are able to significantly improve both the quality and yield of in vitro derived RBCs. We illustrate how insight from human genetic variation can assist in the development of broadly applicable approaches that have tremendous value for regenerative medicine.
Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells.
Specimen part
View Samples