Hypoxia signature in Clear cell RCC
Regulation of endocytosis via the oxygen-sensing pathway.
Specimen part, Disease, Disease stage
View SamplesUV-B radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibits maize leaf growth without causing any other visible stress symptoms, including accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth is a consequence of a reduction in cell production, and a shortened growth zone (GZ) in UV-B irradiated leaves. To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including Growth Regulating Factors (GRFs) and transcripts for proteins participating in different hormone pathways. Overall design: Factorial design with two factors: Treatment (control vs UV-B) x Zone I (0-1cm from base of the leaf), 2 (1-2cm from base of the leaf) and 3 (2-3cm from base of the leaf), 3 replicates
UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels.
Specimen part, Subject
View SamplesCancer cells interact with surrounding stromal fibroblasts during tumorigenesis, but the complex molecular rules that govern these interactions remain poorly understood, thus hindering the development of therapeutic strategies to target cancer stroma. We have taken a mathematical approach to begin defining these rules by performing large-scale quantitative analysis of fibroblast effects on cancer cell proliferation across more than four hundred heterotypic cell line pairings. Systems-level modeling of this complex dataset using singular value decomposition revealed that normal tissue fibroblasts variably express at least two functionally distinct activities, one which reflects transcriptional programs associated with activated mesenchyme, that act either coordinately or at cross-purposes to modulate cancer cell proliferation. To gain insight into the molecular identity of these fibroblast activities, we isolated RNA from 36 human skin and lung fibroblast cell line monocultures from Coriell Repositories or ATCC and performed microarray-based gene expression profiling using Affymetrix gene chips.
Systems-level modeling of cancer-fibroblast interaction.
Sex, Age, Race
View SamplesSurgical interventions on blood vessels bear a risk for intimal hyperplasia and atherosclerosis as a consequence of injury. A specific feature of intimal hyperplasia is the loss of vascular smooth muscle cell (VSMC) differentiation gene expression. We hypothesized that immediate responses following injury induce vascular remodeling. To differentiate injury due to trauma, reperfusion and pressure changes we analyzed vascular responses to carotid artery bypass grafting in mice compared to transient ligation. As a control, the carotid artery was surgically laid open only. In both, bypass or ligation models, the inflammatory responses were transient, peaking after 6h, whereas the loss of VSMC differentiation gene expression persisted. Extended time kinetics showed that transient carotid artery ligation was sufficient to induce a persistent VSMC phenotype change throughout 28 days. Transient arterial ligation in ApoE knockout mice resulted in atherosclerosis in the transiently ligated vascular segment but not on the not-ligated contralateral side. The VSMC phenotype change could not be prevented by anti-TNF antibodies, Sorafenib, Cytosporone B or N-acetylcysteine treatment. Surgical interventions involving hypoxia/reperfusion are sufficient to induce VSMC phenotype changes and vascular remodeling. In situations of a perturbed lipid metabolism this bears the risk to precipitate atherosclerosis. Overall design: Comparison of mRNA changes between control tissue and bypass grafts perfused for 1, 6 and 24h. Number of replicated per group =4-5
Hypoxia/reperfusion predisposes to atherosclerosis.
Sex, Specimen part, Cell line, Subject
View SamplesIn this study we obtained gene expression profiles of MCFS and parental MCF7 cell lines using Illumina microarrays
In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays.
Specimen part, Cell line
View SamplesCNS-delivery of Interleukin 4 (IL-4) - via a lentiviral-mediated gene therapy strategy - skews microglia to proliferate, inducing these cells to adopt the phenotype of slowly proliferating cells. Transcriptome analysis revealed that IL-4-treated microglia express a broad number of genes normally encoded by embryonic microglia. Overall design: RNAseq analysis of sorted microglia from mice receiving IL-4 gene therapy
Interleukin 4 modulates microglia homeostasis and attenuates the early slowly progressive phase of amyotrophic lateral sclerosis.
Specimen part, Cell line, Subject
View SamplesThe ACBP knockout were created by targeted disruption of the gene in mice. The expression profiling was performed on liver tissue from ACBP-/- (KO) and +/+ (WT) mice at the age of 21 days, which in our study is the time immediately before weaning. The mice used for this experiment were taken directly away from their mother. Thus, having free access to chow and breast milk until sacrificed at 8-11am
Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning.
Specimen part
View SamplesParkinson's disease (PD) is a chronic progressive neurodegenerative disorder that is clinically defined in terms of motor symptoms. These are preceded by prodromal non-motor manifestations that prove the systemic nature of the disease. Identifying genes and pathways altered in living patients provide new information on the diagnosis and pathogenesis of sporadic PD. We study changes in gene expression in the blood of 40 sporadic PD patients and 20 healthy controls (Discovery set) by taking advantage of the Affymetrix platform. Patients were at the onset of motor symptoms and before initiating any pharmacological treatment. By applying Ranking-Principal Component Analysis, PUMA and Significance Analysis of Microarrays, gene expression profiling discriminates patients from healthy controls and identifies differentially expressed genes in blood. The majority of these are also present in dopaminergic neurons of the Substantia Nigra, the key site of neurodegeneration. Together with neuronal apoptosis, lymphocyte activation and mitochondrial dysfunction, already found in previous analysis of PD blood and post-mortem brains, we unveiled transcriptome changes enriched in biological terms related to epigenetic modifications including chromatin remodeling and methylation. Candidate transcripts were validated by RT-qPCR in an independent cohort of 12 patients and controls (Validation set). Our data support the use of blood transcriptomics to study neurodegenerative diseases. It identifies changes in crucial components of chromatin remodeling and methylation machineries as early events in sporadic PD suggesting epigenetics as target for therapeutic intervention.
Blood transcriptomics of drug-naïve sporadic Parkinson's disease patients.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma.
Age, Specimen part, Disease, Treatment
View SamplesHepatosplenic T-cell lymphoma (HSTL) is an aggressive lymphoma cytogenetically characterized by isochromosome 7q [i(7)(q10)], of which the molecular consequences remain unknown. We report here results of an integrative genomic and transcriptomic (expression microarray and RNA-sequencing) study of six HSTL cases with i(7)(q10) and three cases with ring 7 [r(7)], a rare variant aberration. Using high resolution array CGH, we prove that HSTL is characterized by the common loss of a 34.88 Mb region at 7p22.1p14.1 (3506316-38406226 bp) and duplication/amplification of a 38.77 Mb region at 7q22.11q31.1 (86259620-124892276 bp). Our data indicate that i(7)(q10)/r(7)-associated loss of 7p22.1p14.1 is a critical event in the development of HSTL, while gain of 7q sequences drives progression of the disease and underlies its intrinsic chemoresistance. Loss of 7p22.1p14.1 does not target a postulated tumor suppressor gene but unexpectedly enhances the expression of CHN2 from the remaining 7p allele, resulting in overexpression of 2-chimerin and dysregulation of a pathway involving RAC1 and NFATC2 with a cell proliferation response. Gain of 7q leads to increased expression of critical genes, including RUNDC3B, PPP1R9A and ABCB1, a known multidrug resistance gene. RNA-sequencing did not identify any additional recurrent mutations or gene fusions, suggesting that i(7)(q10) is the only driver event in this tumor. Our study confirms the previously described gene expression profile of HSTL and identifies a set of 24 genes, including three located on chromosome 7 (CHN2, ABCB1 and PPP1R9A), distinguishing HSTL from other malignancies
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma.
Age, Specimen part, Treatment
View Samples