To further understand molecular mechanisms underlying skeletal muscle hypertrophy, expression profiles of translationally and transcriptionally regulated genes were characterized following an acute bout of maximally activated eccentric contractions. Experiments demonstrated that translational mechanisms contribute to acute gene expression changes following high resistance contractions with two candidate mRNAs, basic fibroblast growth factor (bFGF) and elongation factor-1 alpha (EF1alpha), targeted to the heavier polysomal fractions after a bout of contractions. Gene profiling was performed using Affymetrix Rat U34A GeneChips with either total RNA or polysomal RNA at one and six hours following contractions. There were 18 genes that changed expression at one hour and 70 genes that were different (60 genes increased:10 genes decreased)at six hours after contractions. The model from this profiling suggests that following high resistance contractions skeletal muscle shares a common growth profile with proliferating cells exposed to serum. This cluster of genes can be classified as "growth" genes and is commonly associated with progression of the cell cycle. However, a unique aspect was that there was induction of a cluster of tumour suppressor or antigrowth genes. We propose that this cluster of "antigrowth" genes is induced by the stress of contractile activity and may act to maintain skeletal muscle in the differentiated state. From the profiling results, further experiments determined that p53 levels increased in skeletal muscle at 6 h following contractions. This novel finding of p53 induction following exercise also demonstrates the power of expression profiling for identification of novel pathways involved in the response to muscle contraction.
Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling.
No sample metadata fields
View SamplesThe HSA21-mES Cell Bank includes, in triplicate clones, thirty-two murine orthologs of HSA21 genes, which can be overexpressed in an inducible manner using the Tet-off system integrated in the Rosa26 locus.
A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes.
Specimen part
View SamplesCellular stress responses can be activated following functional defects in organelles such as mitochondria and the endoplasmic reticulum. Mitochondrial dysfunction caused by loss of the serine protease HtrA2 leads to a progressive movement disorder in mice and has been linked to parkinsonian neurodegeneration in humans. Here we demonstrate that loss of HtrA2 results in transcriptional up-regulation of nuclear genes characteristic of the integrated stress response, including the transcription factor CHOP, selectively in the brain. We also show that loss of HtrA2 results in the accumulation of unfolded proteins in the mitochondria, defective mitochondrial respiration and enhanced production of reactive oxygen species that contribute to the induction of CHOP expression and to neuronal cell death. CHOP expression is also significantly increased in Parkinsons disease patients brain tissue. We therefore propose that this brain-specific transcriptional response to stress may be important in the advance of neurodegenerative diseases.
Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response.
No sample metadata fields
View SamplesCellular stress responses can be activated following functional defects in organelles such as mitochondria and the endoplasmic reticulum. Mitochondrial dysfunction caused by loss of the serine protease HtrA2 leads to a progressive movement disorder in mice and has been linked to parkinsonian neurodegeneration in humans. Here we demonstrate that loss of HtrA2 results in transcriptional up-regulation of nuclear genes characteristic of the integrated stress response, including the transcription factor CHOP, selectively in the brain. We also show that loss of HtrA2 results in the accumulation of unfolded proteins in the mitochondria, defective mitochondrial respiration and enhanced production of reactive oxygen species that contribute to the induction of CHOP expression and to neuronal cell death. CHOP expression is also significantly increased in Parkinsons disease patients brain tissue. We therefore propose that this brain-specific transcriptional response to stress may be important in the advance of neurodegenerative diseases.
Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response.
No sample metadata fields
View SamplesCellular stress responses can be activated following functional defects in organelles such as mitochondria and the endoplasmic reticulum. Mitochondrial dysfunction caused by loss of the serine protease HtrA2 leads to a progressive movement disorder in mice and has been linked to parkinsonian neurodegeneration in humans. Here we demonstrate that loss of HtrA2 results in transcriptional up-regulation of nuclear genes characteristic of the integrated stress response, including the transcription factor CHOP, selectively in the brain. We also show that loss of HtrA2 results in the accumulation of unfolded proteins in the mitochondria, defective mitochondrial respiration and enhanced production of reactive oxygen species that contribute to the induction of CHOP expression and to neuronal cell death. CHOP expression is also significantly increased in Parkinsons disease patients brain tissue. We therefore propose that this brain-specific transcriptional response to stress may be important in the advance of neurodegenerative diseases.
Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression.
Cell line
View SamplesThe transcriptional repressor ZBTB18 was overexpressed in the brain tumor xenoline JX6 by lentiviral transduction. Three independent transduction were performed (biological replicates) and analyzed by gene expression aray. Gene set enrichemnt analysis (GSEA) showed changes in the expression of mesenchymal signature. A subset of genes was further valiadted by qPCR. These results indicate a role of ZBTB18 as repressor of mesenchymal genes in Glioblastoma.
Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression.
Cell line
View SamplesThe transcriptional repressor ZBTB18 was overexpressed in the brain tumor stem cell-like BTSC233 by lentiviral transduction. Three independent transduction were performed (biological replicates) and analyzed by gene expression aray. Gene set enrichemnt analysis (GSEA) showed changes in the expression of mesenchymal signature. A subset of genes was further valiadted by qPCR. These results indicate a role of ZBTB18 as repressor of mesenchymal genes in Glioblastoma.
Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression.
Cell line
View SamplesThe concept of germ layers has been one of the foremost organizing principles in developmental biology, classification, systematics and evolution for 150 years. Of the three germ layers, the mesoderm is found in bilaterian animals but is absent in species in the phyla Cnidaria and Ctenophora, which has been taken as evidence that the mesoderm was the final germ layer to evolve. The origin of the ectoderm and endoderm germ layers, however, remains unclear, with models supporting the antecedence of each as well as a simultaneous origin. Here we determine the temporal and spatial components of gene expression spanning embryonic development for all Caenorhabditis elegans genes and use it to determine the evolutionary ages of the germ layers. The gene expression program of the mesoderm is induced after those of the ectoderm and endoderm, thus making it the last germ layer both to evolve and to develop. Strikingly, the C. elegans endoderm and ectoderm expression programs do not co-induce; rather the endoderm activates earlier, and this is also observed in the expression of endoderm orthologues during the embryology of the frog Xenopus tropicalis, the sea anemone Nematostella vectensis and the sponge Amphimedon queenslandica. Querying the phylogenetic ages of specifically expressed genes reveals that the endoderm comprises older genes. Taken together, we propose that the endoderm program dates back to the origin of multicellularity, whereas the ectoderm originated as a secondary germ layer freed from ancestral feeding functions. Overall design: Two temporal assays of Caenorhabditis elegans embryonic development, starting at the zygote: (a) Embryos collected at fixed (~10 minute) time intervals. (b) Embryo segregates, up to five lines of blastomeres, isolated in reference to mitotic events. There were 184 samples in total, representing 100 distinct data points (50 in each assay).
Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer.
Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The PurR regulon in Escherichia coli K-12 MG1655.
No sample metadata fields
View Samples