Transcriptional profiles of uropathogenic Escherichia coli CFT073 exposed to cranberry-derived proanthocyanidins (PACs) were determined. Our results indicate that bacteria grown on media supplemented with PACs were iron-deprived. To our knowledge, this is the first time that PACs have been shown to induce a state of iron-limitation in this bacterium.
Induction of a state of iron limitation in uropathogenic Escherichia coli CFT073 by cranberry-derived proanthocyanidins as revealed by microarray analysis.
No sample metadata fields
View SamplesTo investigate the effect of CEBPA and its mutant isoform P30 on the expression of mRNAs and long non-coding RNAs (lncRNAs), we utilized the K562 AML cell line carrying a stable and Tet-on inducible CEBPA or P30 allele. Overall design: Based on the expression of known CEBPA transcriptional targets, we selected RNA extracted from 48 hours of induction (CEBPA or P30) together with RNA extracted from control-induced cells (CTR). 2 biological replicates for each sample have been utilized.
C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia.
No sample metadata fields
View SamplesVarious substances have been reported to enhance the cardiac differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Ascorbic Acid had a cardiogenic effect in mESC CGR8 cell line. Transcriptome of AA-treated CGR8 ESCs did not reveal any significant changes in gene expression as compared to untreated cells.
Ascorbic Acid-Induced Cardiac Differentiation of Murine Pluripotent Stem Cells: Transcriptional Profiling and Effect of a Small Molecule Synergist of Wnt/β-Catenin Signaling Pathway.
Specimen part, Cell line
View SamplesAmyotrophic lateral sclerosis (ALS) is a paralytic degenerative disease of the nervous system. In the SOD1 mouse model of ALS we found loss of the molecular and functional microglia signature associated with pronounced expression of miR-155 in SOD1 mice. We also found increased expression of miR-155 in the spinal cord of ALS subjects. Genetic ablation of miR-155 increased survival in SOD1 mice and reversed the abnormal microglial and monocyte molecular signature. In addition, dysregulated proteins in the spinal cord of SOD1 mice that we identified in human ALS spinal cords and CSF were restored in SOD1G93A/miR155-/- mice. Treatment of SOD1 mice with anti-miR-155 SOD1 mice injected systemically or into the cerebrospinal fluid prolonged survival and restored the microglial unique genetic and microRNA profiles. Our findings provide a new avenue for immune based therapy of ALS by targeting miR-155. Overall design: Total RNA was isolated from whole lumbar spinal cord homogenate from healthy control donors without known neurologic diseases and sporadic and familial ALS.
Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice.
No sample metadata fields
View SamplesEvidence suggests that BRCA1 mutation associated tumors have increased sensitivity to DNA damaging agents like cisplatin. Sporadic triple negative breast cancers (TNBC) have many phenotypic similarities to BRCA1 tumors and may have a similar sensitivity to cisplatin. We tested the efficacy of cisplatin monotherapy in 28 TNBC patients in a single arm neoadjuvant trial with outcome measured by pathologic treatment response quantified using the Miller-Payne scale.
Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer.
Age, Disease stage
View SamplesMicroglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A?-plaques in human Alzheimer’s disease brain. This is mediated by a switch from a (M0)-homeostatic to (MGnD)-neurodegenerative phenotype following phagocytosis of apoptotic neurons via the TREM2-APOE pathway. TREM2 induces APOE signaling which is a negative regulator of the transcription program in M0-homeostatic microglia. Targeting the TREM2-APOE pathway restores the M0-homeostatic signature of microglia in APP-PS1 and SOD1 mice and prevents from neuronal loss in an acute model of neurodegeneration. In SOD1 mice, TREM2 regulates MGnD in a gender-dependent manner. APOE-mediated MGnD microglia lose their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Overall design: Illumina NextSeq500 was used to identify disease-associated vs. homeostatic molecular microglia signature in microglia in different disease models and transgenic models. Bulk microglia (1,000 cells/sample) FCRLS+ sorted microglia.
The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.
Specimen part, Cell line, Subject
View SamplesMicroglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A?-plaques in human Alzheimer’s disease brain. This is mediated by a switch from a (M0)-homeostatic to (MGnD)-neurodegenerative phenotype following phagocytosis of apoptotic neurons via the TREM2-APOE pathway. TREM2 induces APOE signaling which is a negative regulator of the transcription program in M0-homeostatic microglia. Targeting the TREM2-APOE pathway restores the M0-homeostatic signature of microglia in APP-PS1 and SOD1 mice and prevents from neuronal loss in an acute model of neurodegeneration. In SOD1 mice, TREM2 regulates MGnD in a gender-dependent manner. APOE-mediated MGnD microglia lose their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Overall design: Illumina NextSeq500 was used to identify disease-associated vs. homeostatic molecular microglia signature in microglia in different disease models and transgenic models. Bulk microglia (1,000 cells/sample) FCRLS+ sorted microglia.
The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.
Sex, Specimen part, Cell line, Subject
View SamplesThe Keap1/Nrf2 signaling pathway is a tractable target for the pharmacological prevention of tumorigenesis. 3H-1,2-dithiole-3-thione (D3T) and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) are representative members of two classes of Nrf2-activating chemopreventive agents. Natural dithiolethiones have been widely used in clinical trials for cancer chemoprevention. Synthetic triterpenoids, however, have been shown to be significantly more potent Nrf2 activators and are under clinical evaluation for the treatment of chronic kidney disease. This study seeks to characterize the structure-activity relationship between D3T and CDDO-Im in mouse liver tissue. To this end we treated Wt and Nrf2-null mice with 300 umol/kg bw D3T and 3, 10, and 30 umol/kg bw CDDO-Im every other day for 5 days and evaulated global gene expression changes as a product of both treamtent and genotype using Affymetrix microarray.
Pharmacogenomics of Chemically Distinct Classes of Keap1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo.
Sex, Age, Specimen part
View SamplesThe purpose of this study was to characterize the transcriptional effects induced by intramuscular IFN-beta-1a treatment (Avonex, 30 g once weekly) in patients with relapsing-remitting form of multiple sclerosis (MS). By using Affymetrix DNA microarrays, we obtained genome-wide expression profiles of peripheral blood mononuclear cells from 24 MS patients within the first four weeks of IFN-beta administration.
Network analysis of transcriptional regulation in response to intramuscular interferon-β-1a multiple sclerosis treatment.
Sex
View SamplesDisseminated prostate cancer cells colonize the skeleton to progress into macroscopic lesions only if they successfully adapt to the bone microenvironment. We previously reported that the ability of prostate cancer cells to generate skeletal tumors in animal models correlated with the expression of the alpha-receptor for Platelet-Derived Growth Factor (PDGFRa). In this study we aimed to identify PDGFRa-regulated genes responsible for the acquisition of a bone-metastatic prostate phenotype. We performed genome-wide expression comparative analyses of human prostate cancer cell lines that differ for PDGFRa expression and propensity to establish tumors in the skeleton of animal models. We investigated the genes that were differentially regulated in the highly bone-metastatic PC3-ML cells and their low-metastatic counterpart PC3-N cells, and the genes differentially regulated between PC3-N and PC3-N with overexpression of PDGFRa (PC3NRa). We have previously shown that DU-145 cells lack PDGFRa and fail to survive longer than three days as disseminated tumor cells after homing to the mouse bone marrow. Interestingly, and in contrast to PC3-N cells, the exogenous expression of PDGFRa did not promote metastatic bone-tropism of DU-145 cells in our model. Thus, we examined the genes that were differentially regulated between DU-145 and DU-145(Ra) and excluded them from our candidate genes. Finally, to refine our findings and compensate for PC3 and DU-145 genetic disparity, we performed a comparative analysis of the genes differentially regulated between two bone metastatic single-cell progenies that were derived from PC3-ML cells.
Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features.
Cell line
View Samples