TEM differentiated in vitro were exposed to treatments increasing or decreasing their proangiogenic activity. We used microarrays to identify the genes differentially expressed among the treatments and associated to changes in TEM proangiogenic and protumoral functions.
TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy.
Cell line, Treatment, Time
View SamplesThe goal of this experiment was to identify possible genes affected directly or indirectly by anti-miR-191.
hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy.
Cell line, Treatment
View SamplesAryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. Hitherto, indoleamine-2,3-dioxygenase 1 (IDO1) or tryptophan- 2, 3-dioxygenase (TDO2) are recognized as the main Trp-catabolizing enzymes (TCEs) responsible for the generation of AHR agonists. Here, the ability of the aromatic L-amino acid oxidase, interleukin 4 induced 1 (IL4I1), to activate the AHR was investigated using IL4I1 knockout CAS-1 glioblastoma cells.
IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression.
Cell line
View SamplesAnalysis of the effect of IL4I1 on gene expression of CD8 T-cells in CLL
IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression.
Sex
View SamplesIndole-3-pyruvate (I3P), an endogenous metabolite derived from tryptophan by gut microbiota and IL4I1 enzyme in humans can potentially activate the transcriptional activity of the Aryl Hydrocarbon receptor. Here we test this by stimulating AHR proficient U-87MG cells with I3P alone or in combination with the AHR antagonist SR1.
IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.
Specimen part, Disease
View SamplesGenome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a bivalent histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate.
Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.
Specimen part
View SamplesGenome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate. Investiagtion of promoters usage changes during ESCs neural induction Overall design: ESCs and NESCs promoter usage profiling by CAGE-seq
Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
New IDH1 mutant inhibitors for treatment of acute myeloid leukemia.
Specimen part
View Samples