This SuperSeries is composed of the SubSeries listed below.
Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.
Specimen part, Treatment, Time
View SamplesA comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and T cell leukemia-derived cell line (Jurkat). TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify signaling pathways underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses, 1g/ml and 10g/ml after 6 and 24 hours of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10g/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that the gene expression of metallothioneins was upregulated in all the three cell types. In addition to the common ZnO-inducible changes, a notable proportion of the genes were regulated in a cell type-specific manner. Using a panel of ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is caused by particle dissolution. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Bioinformatics assessment showed that the top human disease category associated with ZnO-responsive genes in both HMDM and Jurkat cells was cancer. Overall, the study revealed novel genes and pathways for mediating ZnO nanoparticle-induced toxicity and demonstrated the value of assessing nanoparticle responses through combined transcriptomics and bioinformatics approach.
Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.
Specimen part, Treatment, Time
View SamplesA comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and T cell leukemia-derived cell line (Jurkat). TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify signaling pathways underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses, 1ug/ml and 10ug/ml after 6 and 24 hours of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10ug/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that the gene expression of metallothioneins was upregulated in all the three cell types. In addition to the common ZnO-inducible changes, a notable proportion of the genes were regulated in a cell type-specific manner. Using a panel of ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is caused by particle dissolution. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Bioinformatics assessment showed that the top human disease category associated with ZnO-responsive genes in both HMDM and Jurkat cells was cancer. Overall, the study revealed novel genes and pathways for mediating ZnO nanoparticle-induced toxicity and demonstrated the value of assessing nanoparticle responses through combined transcriptomics and bioinformatics approach.
Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.
Treatment, Time
View SamplesWe profiled spinal cord tissue at the site of a moderate contusion injury at the level of the thoracic spinal cord
TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways.
Age, Specimen part, Time
View SamplesSuper-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling transcription factors and oncogenes. BRD4 and CDK7 are positive regulators of SE-mediated transcription. By contrast, negative regulators of SE-associated genes have not been well described. Here we show that the Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We report that the natural product cortistatin A (CA) selectively inhibits Mediator kinases, has anti-leukaemic activity in vitro and in vivo, and disproportionately induces upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the transcription factors CEBPA, IRF8, IRF1 and ETV6. The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has anti-leukaemic activity. Individually increasing or decreasing the expression of these transcription factors suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to the dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types, and can be pharmacologically targeted as a therapeutic approach to AML.
Mediator kinase inhibition further activates super-enhancer-associated genes in AML.
Specimen part, Cell line, Treatment
View SamplesWe characterized the marine natural product cortistatin A (CA) as an inhibitor of CDK8 to determine whether pharmacologic inhibition of CDK8 regulates super-enhancer function and inhibits AML proliferation.
Mediator kinase inhibition further activates super-enhancer-associated genes in AML.
Specimen part, Cell line, Treatment
View SamplesWe characterized the marine natural product cortistatin A (CA) as an inhibitor of CDK8 to determine whether pharmacologic inhibition of CDK8 regulates super-enhancer function and inhibits AML proliferation.
Mediator kinase inhibition further activates super-enhancer-associated genes in AML.
Specimen part, Cell line, Treatment
View SamplesWe characterized the marine natural product cortistatin A (CA) as an inhibitor of CDK8 to determine whether pharmacologic inhibition of CDK8 regulates super-enhancer function and inhibits AML proliferation.
Mediator kinase inhibition further activates super-enhancer-associated genes in AML.
Specimen part, Cell line, Treatment
View SamplesWe characterized the marine natural product cortistatin A (CA) as an inhibitor of CDK8 to determine whether pharmacologic inhibition of CDK8 regulates super-enhancer function and inhibits AML proliferation.
Mediator kinase inhibition further activates super-enhancer-associated genes in AML.
Specimen part, Cell line, Treatment
View SamplesWe characterized the marine natural product cortistatin A (CA) as an inhibitor of CDK8 to determine whether pharmacologic inhibition of CDK8 regulates super-enhancer function and inhibits AML proliferation. In this series, we examine the transcriptional effect on insensitive HCT116 cells of 3hrs exposure to CA. Overall design: HCT116 cells were treated in triplicate with either DMSO or CA for 3hrs after which RNA was harvested and prepared for RNA sequencing to assess transcriptional changes.
Mediator kinase inhibition further activates super-enhancer-associated genes in AML.
No sample metadata fields
View Samples