We explored the mechanistic involvement of the growth arrest and DNA damageinducible gene, GADD45a, in LPS- and ventilator-induced inflammatory lung injury (VILI). Multiple biochemical and genomic parameters of inflammatory lung injury indicated GADD45a-/- mice to be modestly susceptible to intratracheal LPS-induced lung injury and profoundly susceptible to high tidal volume ventilation-induced lung injury (VILI) with increases in microvascular permeability and levels of inflammatory cytokines in bronchoalveolar lavage. Expression profiling of lung tissues from GADD45a-/- mice revealed strong dysregulation in the B cell receptor signaling pathway suggesting involvement of PI3 kinase/Akt signaling components while the wild type controls depicted no observable changes. Western blot analyses of lung homogenates confirmed ~50% reduction in Akt protein levels in GADD45a-/- mice accompanied by marked increases in Akt ubiquitination. Electrical resistance measurements across human lung endothelial cell monolayers with either reduced GADD45a or Akt expression (siRNAs) revealed significant potentiation of LPS-induced human lung endothelial barrier dysfunction which was attenuated by overexpression of a constitutively active Akt1 transgene. These studies validate GADD45a as a novel candidate gene in inflammatory lung injury and a significant participant in vascular barrier regulation via effects on Akt-mediated endothelial signaling
GADD45a is a novel candidate gene in inflammatory lung injury via influences on Akt signaling.
No sample metadata fields
View SamplesWe have previously demonstrated that pre-B-cell colony enhancing factor (PBEF) ais a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility118. In the current study, we explored the mechanistic participation of PBEF in ALI and ventilator-induced associated lung injury (VIALI). Initial in vitro studies and demonstrated rhPBEF aas a direct rat neutrophil chemotactic factor in vitro producing marked in vivo increases in BAL leukocytes (PMNs) in vivo following (intratracheal injection (,IT) in C57B6 mice. These latter changes were accompanied by increased BAL levels of the PMN chemoattractants (, KC and MIP2), and modest changes in lung vascular and but were not associated with significant increasesin alveolar permeability. We next explored the potential synergism between rhPBEF administration (IT) and a mechanical ventilation model of modest VILI lung injury (4 hours, 30 ml/kg tidal volume). We and observed dramatic synergistic increases in BAL PMNs, and both BAL protein and cytokine levels (IL-6, TNF-?, KC). Gene expression profiling Microarray analysis further supported a major role for PBEF in the induction of gene modules associated with ALI and VALI (NFkB pathway, leukocyte extravasation, apoptosis, toll receptor signaling). Finally, we exposed wild type and heterozygous PBEF+/- mice (targeted deletion of a single PBEF allele deletion) to a model of severe VILImechanical ventilation-induced lung injury (4 hours, 40 ml/kg tidal volume). PBEF+/- mice were significantly protected from VIALI-associated increases in BAL protein and BAL IL-6 levels and exhibited significantly reduced expression of ALI-associated gene expression modules. Together, these results indicate that PBEF is a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI.
Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury.
No sample metadata fields
View SamplesWe have previously demonstrated that pre-B-cell colony enhancing factor (PBEF) ais a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility118. In the current study, we explored the mechanistic participation of PBEF in ALI and ventilator-induced associated lung injury (VIALI). Initial in vitro studies and demonstrated rhPBEF aas a direct rat neutrophil chemotactic factor in vitro producing marked in vivo increases in BAL leukocytes (PMNs) in vivo following (intratracheal injection (,IT) in C57B6 mice. These latter changes were accompanied by increased BAL levels of the PMN chemoattractants (, KC and MIP2), and modest changes in lung vascular and but were not associated with significant increasesin alveolar permeability. We next explored the potential synergism between rhPBEF administration (IT) and a mechanical ventilation model of modest VILI lung injury (4 hours, 30 ml/kg tidal volume). We and observed dramatic synergistic increases in BAL PMNs, and both BAL protein and cytokine levels (IL-6, TNF-?, KC). Gene expression profiling Microarray analysis further supported a major role for PBEF in the induction of gene modules associated with ALI and VALI (NFkB pathway, leukocyte extravasation, apoptosis, toll receptor signaling). Finally, we exposed wild type and heterozygous PBEF+/- mice (targeted deletion of a single PBEF allele deletion) to a model of severe VILImechanical ventilation-induced lung injury (4 hours, 40 ml/kg tidal volume). PBEF+/- mice were significantly protected from VIALI-associated increases in BAL protein and BAL IL-6 levels and exhibited significantly reduced expression of ALI-associated gene expression modules. Together, these results indicate that PBEF is a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI.
Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury.
No sample metadata fields
View SamplesClinically significant radiation-induced lung injury (RILI) is associated with significant morbidity and mortality and a common toxicity in patients administered thoracic radiotherapy. While the molecular etiology of RILI is poorly understood, we previously characterized a murine model of RILI in which alterations in lung endothelial barrier integrity surfaced as a potentially important pathobiologic event. In these studies, inhibition of HMG-CoA reductase activity (simvastatin) reduced murine RILI-associated lung inflammation and vascular leak and attenuated radiation-induced dysregulation of sphingolipid metabolic pathway genes identified by genome-wide lung gene expression profiling. In the present study, we test the hypothesis that sphingolipid signaling components serve as important modulators of RILI pathobiology and novel therapeutic targets. Sphingolipid involvement in murine RILI was confirmed by radiation-induced increases in lung expression of sphingosine kinase (SphK) isoforms 1 and 2 and increases in the ratio of ceramide to cumulative sphingosine-1-phosphate (S1P) and dihydro-S1P (DHS1P) levels in plasma, bronchoalveolar lavage (BAL) fluid and lung tissue following 25 Gy exposure (6 weeks). Moreover, genetically-engineered mice with either targeted deletion of SphK1 (SphK1-/-), or with reduced expression of selective members of the S1P receptor family (S1PR1+/-, S1PR2-/-, S1PR3-/-,), exhibited marked susceptibility to RILI-mediated lung inflammation. Finally, we assessed the efficacy of three potent vascular barrier-protective S1P analogues FTY720 (FTY), fTysiponate (fTyS) and SEW-2871 (SEW) in attenuating indices of RILI. The phosphonate analogue, fTyS, and to a lesser degree SEW, exhibited significant attenuation of RILI and RILI-induced gene dysregulation compared to control RILI-challenged mice (6 weeks). In contrast, FTY failed to significantly alter physiologic or genomic changes compared to RILI-challenged controls. Together, these results support the targeting of sphingolipid components as a novel and effective therapeutic strategy in RILI.
Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs.
Sex, Specimen part, Treatment
View SamplesTumor hypoxia levels range from mild to severe and have different biological and therapeutical consequences, but are not easily assessable in patients. We present a method based on diagnostic dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) that visualizes a continuous range of hypoxia levels in tumors of cervical cancer patients. Hypoxia images were generated using an established approach based on pixel-wise combination of the DCE-MRI parameters e and Ktrans, reflecting oxygen consumption and supply, respectively. An algorithm to retrieve hypoxia levels from the images was developed and validated in 28 xenograft tumors, by comparing the MRI-defined levels with hypoxia levels derived from pimonidazole stained histological sections. We further established an indicator of hypoxia levels in patient tumors based on expression of nine hypoxia responsive genes. A strong correlation was found between these indicator values and the MRI-defined hypoxia levels in 63 patients. Chemoradiotherapy outcome of 74 patients was most strongly predicted by moderate hypoxia levels, whereas more severe or milder levels were less predictive. By combining gene expression profiles and MRI-defined hypoxia levels in cancer hallmark analysis, we identified a distribution of levels associated with each hallmark; oxidative phosphorylation and G2/M checkpoint were associated with moderate hypoxia, and epithelial-to-mesenchymal transition and inflammatory responses with significantly more severe levels. At the mildest levels, interferon response hallmarks, together with stabilization of HIF1A protein by immunohistochemistry, appearred significant. Thus, our method visualizes the distribution of hypoxia levels within patient tumors and has potential to distinguish levels of different prognostic and biological significance.
MRI Distinguishes Tumor Hypoxia Levels of Different Prognostic and Biological Significance in Cervical Cancer.
Cell line, Treatment
View SamplesPublished molecular profiling studies in patients with lymphoma suggested the influence of hypoxia inducible factor-1 alpha (HIF1) targets in prognosis of DLBCL. Yet, the role of hypoxia in hematological malignancies remains unclear. We observed that activation of HIF1 resulted in global translation repression during hypoxic stress in DLBCL. Protein translation efficiency as measured using 35S-labeled methionine incorporation revealed a 50% reduction in translation upon activation of HIF1. Importantly, translation was not completely inhibited and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with a decrease in mitochondrial function. Screening of primary DLBCL patient samples revealed that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies demonstrated that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide strong support for the direct contribution of HK2 in B-cell lymphoma development and suggest that HK2 is a key metabolic driver of the DLBCL phenotype.ne incorporation revealed a 50% reduction in translation upon activation of HIF1. Importantly, translation was not completely blunted and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with decrease in mitochondrial function. Screening of DLBCL patient samples identified that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies show that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide more definitive proof of direct contribution of HK2 in development of B-cell lymphoma and suggest that HK2 is a key metabolic driver of DLBCL phenotype.
Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL.
Cell line, Treatment
View SamplesWe examined the biological effects of a potent second-generation proteasome inhibitor, ixazomib, in T-cell lymphoma and Hodgkin lymphoma cell lines and human xenograft models. Ixazomib resulted in time- and dose-dependent cytotoxicity and apoptosis in all cell lines (IC50s <75nM). In vivo studies via SCID tumor xenografts showed significant inhibition of tumor growth (P<0.001) with significantly improved survival (P<0.001) in Jurkat and L540 models with ixazomib-treated mice versus controls. Through global transcriptome and network analyses, ixazomib-treated Jurkat and L540 cells showed significant overlap in biological functions involved in regulation of cell cycle, chromatin modification, and DNA repair processes with a lack of conservation observed in a relatively ixazomib-resistant cell line, L428. Moreover, the predicted activation and inhibition status of tumor suppressors and oncogenes strongly favored ixazomib inhibition of tumor progression. Most notably, ixazomib down-regulated protein levels of MYC and its target genes. Additionally, chromatin immunoprecipitation showed that histone H3 acetylation affected MYC levels and cell death response to ixazomib. Furthermore, inhibition of MYC with JQ1 resulted in synergistic cell death in L428, which was confirmed utilizing MYC knockout. Collectively, ixazomib down-regulated MYC and downstream substrates in TCL and HL, while resistance appeared mediated through MYC- and CHK1-dependent mechanisms.
Proteasomal Inhibition by Ixazomib Induces CHK1 and MYC-Dependent Cell Death in T-cell and Hodgkin Lymphoma.
Specimen part, Treatment
View SamplesBackground. Chronic fatiguing illness remains a poorly understood syndrome of unknown pathogenesis. We attempted to identify biomarkers for chronic fatiguing illness using microarrays to query the transcriptome in peripheral blood leukocytes. Methods. Cases were 44 individuals who were clinically evaluated and found to meet standard international criteria for chronic fatigue syndrome or idiopathic chronic fatigue, and controls were their monozygotic co-twins who were clinically evaluated and never had even one month of impairing fatigue. Biological sampling conditions were standardized and RNA stabilizing media were used. These methodological features provide rigorous control for bias resulting from case-control mismatched ancestry and experimental error. Individual gene expression profiles were assessed using Affymetrix Human Genome U133 Plus 2.0 arrays. Findings. There were no significant differences in gene expression for any transcript. Conclusions. Contrary to our expectations, we were unable to identify a biomarker for chronic fatiguing illness in the transcriptome of peripheral blood leukocytes suggesting that positive findings in prior studies may have resulted from experimental bias.
Gene expression in peripheral blood leukocytes in monozygotic twins discordant for chronic fatigue: no evidence of a biomarker.
Sex
View SamplesCells are constantly exposed to stress. Most of those stresses do not necessarily cause cell death or visible damage. The present study explores the way the immune system responds to such sub lethal stressed cells.
Cells exposed to sublethal oxidative stress selectively attract monocytes/macrophages via scavenger receptors and MyD88-mediated signaling.
Specimen part, Treatment
View SamplesHigh-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the effects of high protein intake on the development of fat deposition and partitioning in response to high-fat and/or HS feeding. A total of thirty adult male Wistar rats were assigned to one of the six dietary regimens with low and high protein, sucrose and fat contents for 5 weeks. Body weight (BW) and food intake were measured weekly. Oral glucose tolerance tests and meal tolerance tests were performed after 4th and 5th weeks of the regimen, respectively. At the end of the study, the rats were killed 2 h after ingestion of a calibrated meal. Blood, tissues and organs were collected for analysis of circulating metabolites and hormones, body composition and mRNA expression in the liver and adipose tissues. No changes were observed in cumulative energy intake and BW gain after 5 weeks of dietary treatment. However, high-protein diets reduced by 20 % the adiposity gain induced by HS and high-sucrose high-fat (HS-HF) diets. Gene expression and transcriptomic analysis suggested that high protein intake reduced liver capacity for lipogenesis by reducing mRNA expressions of fatty acid synthase (fasn), acetyl-CoA carboxylase a and b (Acaca and Acacb) and sterol regulatory element binding transcription factor 1c (Srebf-1c). Moreover, ketogenesis, as indicated by plasma -hydroxybutyrate levels, was higher in HS-HF-fed mice that were also fed high protein levels. Taken together, these results suggest that high-protein diets may reduce adiposity by inhibiting lipogenesis and stimulating ketogenesis in the liver.
High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats.
Sex, Specimen part
View Samples