In C. elegans, ablation of germline stem cells (GSCs) extends lifespan, but also increases fat accumulation and alters lipid metabolism, raising the intriguing question of how these effects might be related. Here we show that a lack of GSCs results in a broad transcriptional reprogramming, in which the conserved detoxification regulator SKN-1/Nrf increases stress resistance, proteasome activity, and longevity. SKN-1 also activates diverse lipid metabolism genes and reduces fat storage, thereby alleviating the increased fat accumulation caused by GSC absence. Surprisingly, SKN-1 is activated by signals from this fat, which appears to derive from unconsumed yolk that was produced for reproduction. We conclude that SKN-1 plays a direct role in maintaining lipid homeostasis, in which it is activated by lipids. This SKN-1 function may explain the importance of mammalian Nrf proteins in fatty liver disease, and suggests that particular endogenous or dietary lipids might promote health through SKN-1/Nrf. Overall design: Samples were prepared from ~5,000 synchronized, L1 arrested day-one adult animals cultured at 25°C. Worms were synchronized by sodium hypochlorite (bleach) treatment, as previously described (Porta-de-la-Riva et al., 2012). Bleach solution (9 mL ddH2O; 1 mL 1 N NaOH; 4 mL Clorox bleach) was freshly prepared before each experiment. Worms were bleached for 5 minutes, washed 5x in M9, and arrested at the L1 stage at 25°C in M9 containing 10 µg/mL cholesterol. Feeding RNAi was started at the L1 stage. This approach only partially reduces skn-1 function, but allows analysis of larger samples than would be feasible with skn-1 mutants, which are sterile (Bowerman et al., 1992). Because these animals were not treated with FUdR, the WT adults contained an intact germline and eggs. As is explained in the Results section, we therefore confined our analysis to genes that were overrepresented in glp-1(ts) animals, which lack eggs and most of the germline, and established a high-confidence cutoff for genes that were upregulated by GSC absence as opposed to simply being expressed specifically in somatic tissues. RNA was extracted using the same protocol for qRT-PCR samples. Purified RNA samples were DNase treated and assigned a RIN quality score using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). Only matched samples with high RIN scores were sent for sequencing. Single read 50 bp RNA sequencing with poly(A) enrichment was performed at the Dana-Farber Cancer Institute Center for Computational Biology using a HiSeq 2000 (Illumina, San Diego, CA). FASTQ output files were aligned to the WBcel235 (Feb 2014) C. elegans reference genome using STAR (Dobin et al., 2013). These files have been deposited at the Gene Expression Omnibus (GEO) with the accession number GSE63075. Samples averaged 75% mapping of sequence reads to the reference genome. Differential expression analysis was performed using a custom R and Bioconductor RNA-seq pipeline (http://bioinf.wehi.edu.au/RNAseqCaseStudy/) (Gentleman et al., 2004; Anders et al., 2013; R Core Team, 2014). Quantification of mapped reads in the aligned SAM output files was performed using featureCounts, part of the Subread package (Liao et al., 2013, 2014). We filtered out transcripts that didn't have at least one count per million reads in at least two samples. Quantile normalization and estimation of the mean-variance relationship of the log-counts was performed by voom (Law et al., 2014). Linear model fitting, empirical Bayes analysis and differential expression analysis was then conducted using limma (Smyth, 2005). To identify genes that are upregulated in a SKN-1-dependent manner by GSC loss, we sought genes for which glp-1(ts) expression was higher than WT, and for which glp-1(ts);skn-1(-) expression was reduced relative to glp-1(ts). To test for this pattern, if a gene's expression change was higher in the comparison of glp-1(ts) vs. WT and lower in the comparison of glp-1(ts);skn-1(-) vs. glp-1(ts), then we calculated the minimum (in absolute value) of the t-statistics from these two comparisons, and assessed the significance of this statistic by comparing to a null distribution derived by applying this procedure to randomly generated t-statistics. We corrected for multiple testing in this and the differential expression analysis using the false discovery rate (FDR) (Benjamini and Hochberg, 1995). Heatmaps were generated using heatmap.2 in the gplots package (Warnes et al., 2014). Functional annotations and phenotypes were obtained from Wormbase build WS246. SKN-1 transcription factor binding site analysis of hits was conducted with biomaRt, GenomicFeatures, JASPAR, MotifDb, motifStack, MotIV, and Rsamtools (Sandelin et al., 2004; Durinck et al., 2005; Durinck et al., 2009; Lawrence et al., 2013; Ou et al., 2013; Mercier and Gottardo, 2014; Shannon, 2014). JASPAR analysis was performed with the SKN-1 matrix MA0547.1 using 2 kb upstream sequences obtained from Ensembl WBcel235 (Staab et al., 2013). modENCODE SKN-1::GFP ChIP-seq analysis of hits was performed using biomaRt, ChIPpeakAnno, IRanges, and multtest (Durinck et al., 2005; Durinck et al., 2009; Gerstein et al., 2010; Zhu et al., 2010; Niu et al., 2011; Lawrence et al., 2013). SKN-1::GFP ChIP-seq peaks were generated by Michael Snyder's lab. We used the peak data generated from the first 3 larval stages: L1 (modENCODE_2622; GSE25810), L2 (modENCODE_3369), and L3 (modENCODE_3838; GSE48710). Human ortholog matching was performed using Wormbase, Ensembl, and OrthoList (Shaye and Greenwald, 2011). Gene lists were evaluated for functional classification and statistical overrepresentation with Database for Annotation, Visualization and Integrated Discovery (DAVID) version 6.7 (Dennis et al., 2003).
Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence.
Cell line, Subject
View SamplesOvarian granulosa cells play a central role in steroidogenesis, which is critical for female reproduction. Follicle-stimulating hormone (FSH) promotes cAMPmediated signaling to regulate granulosa cell steroidogenesis. We have shown previously that 2, 2-bis-(p-hydroxyphenyl)-1, 1, 1-trichloroethane (HPTE) inhibits FSH- and dibutyryl cAMP-stimulated steroidogenesis, and affects the mRNA levels of steroidogenic pathway enzymes in rat granulosa cells. However, HPTE showed a differential effect in FSH- and cAMP-stimulated cells in that HPTE more completely blocked FSH- when compared to cAMP-driven steroidogenesis. The objective of this study was to analyze the effects of HPTE on global gene expression profiles in untreated granulosa cells and those challenged with FSH or cAMP. Granulosa cells from immature rats were cultured with 0, 1, 5, or 10 M HPTE in the presence and absence of either 3 ng FSH/ml or 1 mM cAMP for 48 h. Total RNA was isolated for microarray analysis using the GeneChip Rat Genome 230 2.0 and ArrayAssist Microarray Suite. An investigation of changes in gene expression across all HPTE treatments showed that HPTE altered more genes in FSH- (~670 genes) than in cAMP-stimulated cells (~366 genes). Analysis confirmed that HPTE more effectively inhibited FSH- than cAMP-induced steroid pathway gene expression and steroidogenesis. Furthermore, expression patterns of novel genes regulating signal transduction, transport, cell cycle, adhesion, differentiation, motility and growth, apoptosis, development, and metabolism were all altered by HPTE. This study further established that HPTE exerts differential effects within the granulosa cell steroidogenic pathway, and revealed that these effects include broader changes in gene expression.
Effect of the methoxychlor metabolite HPTE on the rat ovarian granulosa cell transcriptome in vitro.
No sample metadata fields
View SamplesAHI-1 is an oncogene often targeted by provirus insertional mutagenesis in murine leukemias and lymphomas. Aberrant expression of human AHI-1 occurs in cutaneous T-cell lymphoma (CTCL) cells and in CD4+CD7- Sezary cells from patients with Sezary syndrome (SS). Stable knockdown of AHI-1 using retroviral-mediated RNA interference in CTCL cells inhibits their transforming activity in vitro and in vivo. To identify genes involved in AHI-1-mediated transformation, microarray analysis was performed to identify differentially expressed genes in AHI-1 suppressed CTCL cells. Fifteen up-regulated and six down-regulated genes were identified and confirmed by Q-RT-PCR. Seven were further confirmed in a microarray analysis of CD4+CD7- Sezary cells from SS patients. HCK and BIN1 emerged as new candidate cooperative genes, with differential protein expression which correlates with observed transcript changes. Interestingly, changes in HCK phosphorylation and biological response to its inhibitor, dasatinib, were observed in AHI-1 suppressed or overexpressed cells. The tumor suppressor BIN1 physically interacts with MYC in CTCL cells, which also exhibit differential MYC protein expression. In addition, aberrant expression of alternative splicing forms of BIN1 was observed in primary and transformed CTCL cells. These findings indicate that HCK and BIN1 may play critical roles in AHI-1-mediated leukemic transformation of human CTCL cells.
Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells.
No sample metadata fields
View SamplesDespite the prevalence and recognition of its detrimental impact, clinical complications of sepsis remain a major challenge. Here, we investigated the effects of myeloid ferritin heavy chain (FtH) in regulating the pathogenic sequelae of sepsis. We demonstrate that deletion of myeloid FtH leads to tolerance towards sepsis as evidenced by reduced serum cytokine levels, multi-organ dysfunction and subsequent mortality. We identified that such tolerance is predominantly mediated by the compensatory increase in circulating ferritin (ferritin light chain; FtL) in the absence of myeloid FtH. Our in vitro and in vivo studies indicate that prior exposure to ferritin provides significant tolerance to the septic process by restraining an otherwise dysregulated response to infection. These findings are mediated by an inhibitory action of ferritin on NF-?B activation and its downstream effects. Taken together, our findings suggest an essential immunomodulatory function for circulating ferritin and enhances our understanding of this acute phase reactant. Overall design: Total RNA were isolated from blood leukocytes of wild type FtH mice and Myeloid deficient FtH mice following sham and CLP surgery. Three biological replicates were considered for each genotype and surgery type.
Ferritin Light Chain Confers Protection Against Sepsis-Induced Inflammation and Organ Injury.
Cell line, Subject
View SamplesAnalysis of C4-2 Prostate cancer cell line after 72 hours of knockdown. CHKA is overexpressed in a number of solid tumours, including prostate cancer. Results provide insight into the molecular mechanisms of CHKA in prostate carcinogenesis. Overall design: This experiment was designed to understand the regulation of transcriptome by Choline kinase alpha (CHKA) which is an important enzyme in Kennedy pathway. In order to achieve this, the endogenous protein was knocked down using siRNA pool that targets the CHKA mRNA.
Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.
No sample metadata fields
View SamplesFemale patients with multiple endocrine neoplasia type 1 are at increased risk to develop breast cancer. We analyzed gene expression after silencing of the MEN1 gene in primary human mammary luminal progenitor cells to identify menin target genes involved in mammary tumorigenesis.
Enhancer-Mediated Oncogenic Function of the Menin Tumor Suppressor in Breast Cancer.
Treatment
View SamplesLarge-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1 knockout mice displayed phenotypes similar to those observed on ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes. Overall design: Total RNA-seq from dissected regions of the digestive tract, from wild-type and percc1-/- mice.
Noncoding deletions reveal a gene that is critical for intestinal function.
Specimen part, Subject
View Samples