Transcriptional profiling for global characterization of gene expression alterations that resulted from treatment of melanoma cells with siRNA specifically targeting NRASQ61R
Oncogenic NRAS has multiple effects on the malignant phenotype of human melanoma cells cultured in vitro.
No sample metadata fields
View Samplesgene expression modification after miR-182 inhibition, day 2 and day 7 after ischemic reperfusion injury
miR-182-5p Inhibition Ameliorates Ischemic Acute Kidney Injury.
Specimen part
View SamplesThe transcription factor T-bet induces differentiation of CD4+ T cells into the Th1 lineage and also allows for a degree of functional plasticity. Here, we show that T-bet acts through super-enhancers to recruit the elongation factor P-TEFb. Th1-specific genes are poised for activation in Th2 cells and P-TEFb recruitment activates transcriptional elongation. T-bet also induces extensive P-TEFb binding at super-enhancers, where it acts to stimulate enhancer RNA transcription. P-TEFb inhibition selectively blocks activation of lineage-specific genes and reverses Th1-associated retinitis pathology. T-bet-mediated recruitment of P-TEFb to super-enhancers at otherwise poised genes provides a model for how lineage-specifying factors promote differentiation towards specific cell fates whilst maintaining a degree of functional plasticity. Overall design: Strand-specific total and poly-A+ RNA-Seq in Th1 and Th2 cells from two independent donors
T-bet Activates Th1 Genes through Mediator and the Super Elongation Complex.
No sample metadata fields
View SamplesWe identified miR-95 in a screen for miRNAs which functionally affect
A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder.
Cell line
View SamplesWe analyzed the global effect of c-Myb knockdown by sequencing the transcriptomes of K-562 cells transfected with control siRNA and si2992 (MYB knockdown), as well as K-562 cells stably expressing TY-tagged wild type c-Myb and c-Myb D152V transfected with si2992 Overall design: Cells were tranfected with siRNA and 24 hours after total RNA was extracted. Three individual experiments were performed. Libraries were prepared and 125-bp paired-end reads were obtained using an Illumina HiSeq 2500 sequencer
A c-Myb mutant causes deregulated differentiation due to impaired histone binding and abrogated pioneer factor function.
Specimen part, Cell line, Subject
View SamplesMicroarray was used to identify differential gene expression pattern in Barrett's esophagus (BE), compared to the normal adjacent epithelia gastric cardia (GC) and normal squamous esophagus (NE)
Evidence for a functional role of epigenetically regulated midcluster HOXB genes in the development of Barrett esophagus.
Specimen part
View SamplesTwo distinct Polycomb complexes, PRC1 and PRC2, collaborate to maintain epigenetic repression of key developmental loci in embryonic stem cells (ESCs). PRC1 and PRC2 have histone modifying activities, catalyzing mono-ubiquitination of histone H2A (H2AK119u1) and trimethylation of H3 lysine 27 (H3K27me3) respectively. Compared to H3K27me3, localization and role of H2AK119ub1 is not fully understood in ESCs. Here we present genome-wide H2AK119u1 maps in ESCs and identify a group of genes at which H2AK119u1 is deposited in a Ring1-dependent manner. These genes are a distinctive subset of genes with H3K27me3 enrichment and are the central targets of Polycomb silencing that are required to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and thereby ESC maintenance. These data demonstrate that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of genes that are crucial for the maintenance of ESC identity. Utilization of these diverse effector mechanisms might provide a means to maintain a repressive state that is robust yet highly responsive to developmental cues during ES cell self-renewal and differentiation.
Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity.
Specimen part, Cell line, Treatment
View SamplesWe used microarrays to investigate the restoration of repression of PRC1 target gene expression in Ring1A/B-dKO ES cells stably expressing either of mock, WT or mutant Ring1B construct.
Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity.
Specimen part, Treatment
View SamplesIdentification of host responses at the gene transcription level provides a molecular profile of the events that occur following infection. Brucella abortus is a facultative intracellular pathogen of macrophages that induces chronic infection in humans and domestic animals. Using microarray technology, the response of macrophages 4 hours following B. abortus infection was analyzed to identify early intracellular infection events that occur in macrophages. Of the more than 6,000 genes, we identified over 140 genes that were reproducibly differentially transcribed. First, an increase in the transcription of a number of pro-inflammatory cytokines and chemokines, such as TNF-, IL-1, IL-1, and members of the SCY family of proteins, was evident that may constitute a general host recruitment of antibacterial defenses. Alternatively, Brucella may subvert newly arriving macrophages for additional intracellular infection. Second, transcription of receptors and cytokines associated with antigen presentation, e.g., MHC class II and IL-12p40, were not evident at this 4 hour period of infection. Third, Brucella inhibited transcription of various host genes involved in apoptosis, cell cycling, and intracellular vesicular trafficking. Identification of macrophage genes whose transcription was inhibited suggests that Brucella utilizes specific mechanisms to target certain cell pathways. In conclusion, these data suggest that B. abortus can alter macrophage pathways to recruit additional macrophages for future infection while simultaneously inhibiting apoptosis and innate immune mechanisms within the macrophage permitting intracellular survival of the bacterium. These results provide insights into the pathogenic strategies used by Brucella to survive long-term within a hostile environment.
Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brucella melitensis, B. neotomae and B. ovis elicit common and distinctive macrophage defense transcriptional responses.
Specimen part
View Samples