Purpose: The goal of this study was to identify differential splicing events in the Drosophila eye during aging. Overall design: Method: RNA extracted from dissected eye tissue of flies aged 10 and 40 days post-eclosion was used to generate cDNA libraries using NuGen Ovation Drosophila RNA seq system. Samples were sequenced using Illumina HiSeq2500 next generation sequencer (three biological replicates per time point).
Proper splicing contributes to visual function in the aging Drosophila eye.
Sex, Age, Specimen part, Subject
View SamplesMacrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signalling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomics and proteomics approaches. We identified a common pattern of genes transcriptionally regulated that overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member, CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine, TNF. Cd180-silenced cells produced increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases the CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response. Overall design: Genome-wide changes in gene Expression in mouse bone marrow-derived macrophages stimulated with Borrelia burgdorferi or left unstimulated were generated by RNAseq.
Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesAlthough lincRNAs are implicated in regulating gene expression in various tissues, little is known about lincRNA transcriptomes in the T cell lineages. Here we identify 1,524 lincRNAs in 42 T cell samples from early T cell progenitors to terminally differentiated T helper subsets. Our analysis revealed highly dynamic and cell-specific expression patterns of lincRNAs during T cell differentiation. Importantly, these lincRNAs are located in genomic regions enriched for protein-coding genes with immune-regulatory functions. Many of these transcripts are bound and regulated by the key T cell transcription factors, T-bet, GATA3, STAT4 and STAT6. We demonstrate that the lincRNA LincR-Ccr2-5''AS, together with GATA3, is an essential component of a regulatory circuit in Th2-specific gene expression. Overall design: To obtain comprehensive profiles of lincRNA expression during the development and differentiation of T cell lineages, we purified CD4-CD8 double negative (DN) cells (DN1, DN2, DN3 and DN4), double positive (DP) cells (CD4+CD8+CD3low and CD4+CD8intCD69+), single positive (SP) CD4 and CD8 cells, and thymic-derived regulatory T cells (tTreg) from thymi of C57BL/6 mice. Additionally, we obtained Th1, Th2, Th17 and iTreg cells by in vitro differentiation of naïve CD4 T cells for a various length of time in culture (4 hrs, 8 hrs, 12 hrs, 24 hrs, 48 hrs, 72 hrs, 1 week, 2weeks). Total and/or polyadenylated RNAs from these cells was analyzed using RNA-Seq. To understand the regulation of lincRNAs by T cell master regulator T-bet, we compared the transcriptiomes between T-bet deficient Th1 cells and control Th1 cells. We did similar experiments and data analysis for STAT4 (Th1), GATA3 (Th2) and STAT6 (Th2). Finally, to address the funcation of a Th2-specifically expressed lincRNA, lincR-Ccr2-5''AS, we compared the transcriptomes between lincR-Ccr2-5''AS knockdown Th2 cells and control Th2 cells.
Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation.
Specimen part, Cell line, Subject
View SamplesPlants aquire nitrogen from the soil, most commonly in the form of either nitrate or ammonium. Unlike ammonium, nitrate must be reduced (with NADH and ferredoxin as electron donors) prior to assimilation. Thus, nitrate nutrition imposes a substantially greater energetic cost than ammonium nutrition. Our goal was to compare the transcriptomes of nitrate-supplied and ammonium-supplied plants, with a particular interest in characterizing the differences in redox metabolism elicited by different forms of inorganic nitrogen.
Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants.
Specimen part
View SamplesThis experiment was designed to study if there are differences in gene expression in the adipose tissue of women affected by polycystic ovary syndrome (PCOS) compared to non-hyperandrogenic women. PCOS is the most common endocrinopathy in women of reproductive age, and is characterized by hyperandrogenism and chronic anovulation. This disease is frequently associated with obesity, insulin resistance, and defects in insulin secretion, predisposing these women to type 2 diabetes, atherosclerosis, and cardiovascular disease.
Differential gene expression profile in omental adipose tissue in women with polycystic ovary syndrome.
No sample metadata fields
View SamplesWhile gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1a regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1a and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1a hyperactivation, disrupting metabolic compartmentalization and blocking the midgestational shift toward oxidative phosphorylation. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for cardiac conduction system establishment. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease. Overall design: RNA was isolated from individual E12.5 embryonic hearts after removal of the atria and valvular region. KOs and control littermates were matched by somite count, and a total number of 3 KOs and 3 controls from 3 independent litters were used. For RNA extraction, QIAzol Lysis Reagent (Qiagen; CA; USA) and the miRNeasy Mini Kit (Qiagen; CA; USA) were used. RNA was quantified and its purity checked with a NanoDrop ND-1000 spectophotometer (Thermo Scientific; MA; USA). RNA integrity was verified with an Agilent 2100 Bioanalyzer (Agilent Technologies; CA; USA). Index-tagged cDNA libraries were constructed from 500 ng of total RNA using the TruSeq RNA Sample Preparation v2 Kit (Illumina; CA; USA). Libraries were quantified by Quant-iTâ„¢ dsDNA HS assay in a Q-bit fluorometer (Life Technologies; CA; USA). Average library size and size distribution were determined by DNA 1000 assay in an Agilent 2100 Bioanalyzer. Libraries were normalized to 10nM using 10mM Tris-HCl, pH8.5 containing 0.1% Tween 20 and then applied to an Illumina flow cell for cluster generation (True Seq SR Cluster Kit V2 cBot) and sequencing-by-synthesis. Single reads of length 75bp were generated with the TruSeq SBS Kit v5 (Illumina; CA; USA) on the Genome Analyzer IIx platform, following the standard RNA sequencing protocol. Reads were further processed using the CASAVA package (Illumina; CA; USA) to split reads according to adapter indexes and produce fastq files.
Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation.
Specimen part, Subject
View SamplesAn improved understanding of the anti-tumor CD8+ T cell response after checkpoint blockade would enable more informed and effective therapeutic strategies. Here we examined the dynamics of the effector response of CD8+ tumor-infiltrating lymphocytes (TILs) after checkpoint blockade therapy. Bulk and single-cell RNA profiles of CD8+ TILs after combined Tim-3+PD-1 blockade in preclinical models revealed significant changes in the transcriptional profile of PD-1? TILs. These cells could be divided into subsets bearing characterstics of naive-, effector-, and memory-precursor-like cells. Effector- and memory-precursor-like TILs contained tumor-antigen-specific cells, exhibited proliferative and effector capacity, and expanded in response to different checkpoint blockade therapies across different tumor models. The memory-precursor-like subset shared features with CD8+ T cells associated with response to checkpoint blockade in patients and was compromised in the absence of Tcf7. Expression of Tcf7 was requisite for the efficacy of diverse immunotherapies, highlighting the importance of this transcriptional regulator in the development of effective CD8+ T cell responses upon immunotherapy. Overall design: (i) RNAseq of Wild Type Naïve-like, Memory-like and Effector-like subpopulations of PD1-CD8+ Tumor infiltrating lymphocytes isolated from MC38-OVA. CD62LhiSlamf7-CX3CR1-, CD62L-Slamf7hiCX3CR1- and CD62L-Slamf7hiCX3CR1+ subsets within PD-1-CD8+ TILs (ii) RNAseq from WT mice, Tim-3+PD-1+ and Tim-3-PD-1- CD8+ TILs were isolated by cell sorting from MC38-OVA tumor-bearing mice that were treated with anti-PD-1 and anti-Tim-3 antibodies or isotype controls. (iii) Droplet-based single-cell RNA-Seq of Tim-3-PD-1- CD8+ TILs from MC38-OVA tumor-bearing WT mice that were treated with anti-PD-1 and anti-Tim-3 antibodies or isotype controls.
Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1<sup>-</sup>CD8<sup>+</sup> Tumor-Infiltrating T Cells.
Specimen part, Cell line, Treatment, Subject
View SamplesNebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical NEM adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulins functional roles in adult muscle we performed studies on a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscle but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survives to adulthood with low nebulin levels (<5% of control), contain nemaline rods, and undergo fiber-type switching towards oxidative types. These microarrays investigate the changes in gene expression when nebulin is deficient.
Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy.
Sex, Age, Specimen part
View SamplesGenome-wide analysis was performed on microRNA 155+/+ and -/- Th17 cells to determine the differentially expressed transcripts that are regulated by miR-155. We found that Jarid2 was differentially expressed in absence of miR-155 and highlight the mechanism for the silencing of IL-22 by Jarid2 and PRC2 in miR-155-/- Th17 cells. Overall design: Comparison of transcriptome of Th17 cells in presence or absence of microRNA 155
miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression.
Specimen part, Cell line, Subject
View SamplesAbnormal mitochondria metabolism and innate immune responses participate in the pathogenesis of many inflammatory disorders. The molecular events regulating mitochondrial activity to control survival and cell death in monocytes/macrophages are poorly understood. Here we show that miR-125b attenuates the activity of the mitochondrial respiratory chain through BIK silencing, and promotes the elongation of mitochondrial network through MTP18 targeting, without impacting autophagy, in the human monocytes. Proinflammatory activation is associated with a concomitant increase in miR-125b expression, decrease in BIK and MTP-18 expression, reduced oxidative phosphorylation, and enhanced mitochondrial fusion. Furthermore, expression of M1-associated transcripts as well as mitochondrial dynamics and energy metabolism are induced upon ectopic expression of miR-125b. In turn, by repressing miR-125b, mitochondrial dynamics was preserved, LPS-induced repression of BIK expression and of mitochondrial respiration were prevented, and M1 polarization of macrophages was inhibited. Altogether, our data reveal a novel role for miR-125b in controlling mitochondrial metabolism and dynamics by targeting BIK and MTP18, respectively, two novel cellular target proteins involved in maintaining the mitochondrial integrity in human monocytes. These findings not only suggest a novel function for miR-125b in regulating metabolic adaptation of monocytes to inflammation but also unravel new molecular mechanisms for its pro-apoptotic role and identify potential targets for interfering with inflammatory activation of monocytes.
miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics.
Specimen part, Cell line
View Samples