OGR1 is a pH-sensing G-protein coupled receptor involved in intestinal homeostasis and inflammation
The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.
Specimen part, Cell line, Treatment
View SamplesOGR1 is a pH sensing G protein-coupled receptor involved in intestinal homeostasis and inflammation. Up-regulation of genes, mediated by OGR1, in response to extracellular acidification were enriched for inflammation, immune response, actin cytoskeleton and cell adhesion pathways.
G Protein-coupled pH-sensing Receptor OGR1 Is a Regulator of Intestinal Inflammation.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage
View SamplesWe surveyed the genome-wide DNA methylation levels and gene expression patterns in patients with pediatric acute lymphoblastic leukemia. Using Affymetrix U133 Plus 2.0 GeneChips, we identified a relatively small set of CpG sites that are highly correlated with gene expression.
Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia.
Specimen part
View SamplesPurpose:To systematically assess the differences between high-throughput single-cell and single-nuclei RNA-seq approaches, we compared Drop-seq and DroNc-seq, two microfluidic-based 3' RNA capture technologies that profile total cellular and nuclear RNA, respectively, during a time course experiment of human induced pluripotent stem cells (iPSCs) differentiating into cardiomyocytes Conclusions: Clustering of time-series transcriptomes from Drop-seq and DroNc-seq revealed six distinct cell types, five of which were found in both techniques. Furthermore, single-cell trajectories reconstructed from both techniques reproduced expected differentiation dynamics. Overall design: Drop-seq and DroNc-seq each on 2 hiPSC cell lines differentiating into cardiomyocytes across 5 time points. DroNc-seq on post-mortem primary heart tissue.
Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation.
Specimen part, Disease, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi.
Age, Specimen part, Treatment
View SamplesMacrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signalling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomics and proteomics approaches. We identified a common pattern of genes transcriptionally regulated that overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member, CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine, TNF. Cd180-silenced cells produced increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases the CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response.
A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi.
Specimen part, Treatment
View SamplesMacrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signalling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomics and proteomics approaches. We identified a common pattern of genes transcriptionally regulated that overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member, CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine, TNF. Cd180-silenced cells produced increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases the CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response. Overall design: Genome-wide changes in gene Expression in mouse bone marrow-derived macrophages stimulated with Borrelia burgdorferi or left unstimulated were generated by RNAseq.
Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesTo uncover the chromosome 16 associated proteome and to take advantage of the generated knowledge to make progress in human biology in health and disease, a consortium of 15 groups was organized in four working groups: SRM and protein sequencing, antibody and peptide standard, clinical healthcare and biobanking and bioinformatics. According to a preliminary in silico study integrating knowledge from Ensembl, UniProt and GPM, Ramos B lymphocyte cells, MCF-7 epitelial cells and CCD18 fibroblast were selected as it is theoretically expected that any chromosome 16 protein coding gene is expressed in at least one of them. To define in detail the transcriptome of the above mentioned cell lines Affymetrix microarray based analyses were performed. Upon hybridization in Human ST 1.0 arrays, raw data were processed with RMA algorithm for background correction and normalization. Chromosome 16 gene expression pattern was then defined in each cell line and comparative analysis was done with R package statistics. Biological functions involving chromosome 16 genes were analysed with GO and functional networks were studied with Ingenuity Pathway Analysis. Expressed genes were compared with data from shotgun proteomic experiments to find the degree of correlation mRNA-protein. Expression of genes coding for proteins with weak or none MS evidence is shown. The integration of this information in decision-making process of the mass spectrometry group is discussed.
Spanish human proteome project: dissection of chromosome 16.
Cell line
View SamplesBulk RNA sequencing data from neural progenitor cells under conditions of low or high growth factor and Notch pathway activation Overall design: Cells were treated with high (20 ng/ml EGF and FGF) or low (0.5 ng/ml EGF) recombinant growth factors, with or without Notch pathway inhibitor (DAPT, 10 uM) for 12h.
<i>Cis-</i>activation in the Notch signaling pathway.
Specimen part, Subject
View Samples