The miR-155-dependent differences in gene expression in the HSPC compartment of FLT3-ITD mice is unknown. In this experiment, we performed RNA sequencing on FLT3-ITD and FLT3-ITD miR-155-/- mouse LKS cells. Overall design: RNA sequencing was performed on RNA extracted from Lin-, cKit+, Sca1+ cells isolated via flow cytometry from FLT3-ITD and FLT3-ITD miR-155-/- mice. 3 samples were submitted for sequencing for each experimental group. Each sample contains RNA from 3 mice, in order to get enough RNA from this rare stem cell population.
miR-155 promotes FLT3-ITD-induced myeloproliferative disease through inhibition of the interferon response.
Specimen part, Subject
View SamplesGene Expression Profiling of Murine Mammary Stem Cells and Differentiated Derivatives.
Purification and unique properties of mammary epithelial stem cells.
Sex
View SamplesThe neuroectoderm is patterned along a rostral-caudal axis in response to localized factors in the embryo, but exactly how these factors act as positional information for this patterning is not yet fully understood. Here, using the self-organizing properties of mouse embryonic stem cell (ESC), we report that ESC-derived neuroectoderm self-generates a Six3+ rostral and a Irx3+ caudal bipolarized patterning. In this instance, localized Fgf signaling performs dual roles, as it regulates Six3+ rostral polarization at an earlier stage and promotes Wnt signaling at a later stage. The Wnt signaling components are differentially expressed in the polarized tissues, leading to genome-wide Irx3+ caudal-polarization signals. Surprisingly, differentially expressed Wnt agonists and antagonists have essential roles in orchestrating the formation of a balanced rostral-caudal neuroectoderm pattern. Together, our findings provide key processes for dynamic self-patterning and evidence that a temporally and locally regulated interaction between Fgf and Wnt signaling controls self-patterning in ESC-derived neuroectoderm.
Self-patterning of rostral-caudal neuroectoderm requires dual role of Fgf signaling for localized Wnt antagonism.
Specimen part
View SamplesWe established the differentiation method of a limb bud organoid from mouse embryonic stem cells (mESCs) using SFEBq. mESCs-derived limb bud organoid selectively differentiate into forelimb or hindlimb by adjusting the retinoic acids activity. To evaluate a correlation of gene expression between limb bud organoid and embryonic tissues (limb bud, branchial arch, cardiac, and tail bud), we performed comparative transcriptome analysis using RNA-seq. Overall design: RNA-seq profiling of mouse embryonic limb bud, branchial arch, cardiac, and tail bud and mESCs-derived forelimb and hindlimb bud mesenchyme (Hnad2::GFP positive), in triplicate, using illumina Hi-seq.
Self-organized formation of developing appendages from murine pluripotent stem cells.
Specimen part, Cell line, Subject
View SamplesUsing stem cellbased therapies to treat retinal abnormalities is becoming a likely possibility; therefore, identifying the key factors and the relevant mechanisms controlling optic vesicle morphogenesis and neuroretina (NR) differentiation is important. Recent advances in self-organizing, 3-dimensional (3D) tissue cultures of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provided a valuable in vitro model for characterizing regulatory cascades and signaling pathways controlling mammalian retinal development. Using Rx-GFP expressing ESCs and Six3/ iPSCs we identified R-spondin 2 (Rspo2)-mediated repression of Wnt signaling as a novel required step during optic vesicle morphogenesis and NR differentiation. Furthermore, we also show that transient ectopic expression of Rspo2 in the anterior neural plate of transgenic mouse embryos was sufficient to arrest NR differentiation. ChIP assays identified Six3-responsive elements in the Rspo2-promoter region, indicating that Six3-mediated repression of Rspo2 is required to restrict Wnt signaling in the developing anterior neuroectoderm and allow eye development to proceed.
An Eye Organoid Approach Identifies Six3 Suppression of R-spondin 2 as a Critical Step in Mouse Neuroretina Differentiation.
Specimen part
View Samples