The molecular regulation of zygotic genome activation (ZGA) in mammals remains poorly understood. Primed mouse embryonic stem cells contain a rare subset of “2C-like” cells that are epigenetically and transcriptionally similar to the two cell embryo and thus represent an ideal system for studying ZGA transcription regulation. Recently, the transcription factor Dux, expressed exclusively in the minor wave of ZGA, was described to activate many downstream ZGA transcripts. However, it remains unknown what upstream maternal factors initiate ZGA either in a Dux dependent or independent manner. Here we performed a candidate-based overexpression screen, identifying, amongst others, Developmental Pluripotency Associated 2 (Dppa2) and 4 (Dppa4) as positive regulators of 2C-like cells and ZGA transcription. In the germ line, promoter DNA demethylation coincides with upregulation of Dppa2 and Dppa4 which remain expressed until E7.5 when their promoters are remethylated. Furthermore, Dppa2 and Dppa4 are also expressed during iPSC reprogramming at the time 2C-like ZGA transcription transiently peaks. Through a combination of overexpression, knockdown, knockout and rescue experiments, together with transcriptional analyses, we show that Dppa2 and Dppa4 directly regulate the 2C-like cell population and associated transcripts, including Dux and the Zscan4 cluster. Importantly, we tease apart the molecular hierarchy in which the 2C-like transcriptional program is initiated and stabilised. Dppa2 and Dppa4 require Dux to initiate 2C-like ZGA transcription, suggesting they act upstream by directly regulating Dux. Supporting this, ChIP-seq analysis revealed Dppa2 and Dppa4 bind to the Dux promoter and gene body and drive its expression. Zscan4c is also able to induce 2C-like cells in wild type cells, but, in contrast to Dux, can no longer do so in Dppa2/4 double knockout cells, suggesting it may act to stabilise rather than drive the transcriptional network. Our findings suggest a model in which Dppa2/4 binding to the Dux promoter leads to Dux upregulation and activation of the 2C-like transcriptional program which is subsequently reinforced by Zscan4c. Overall design: RNA sequencing of screen hits (3 biological replicates of GFP+ and GFP- sorted cells for each of 12 candidates).
Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program.
Specimen part, Cell line, Subject
View SamplesThe molecular regulation of zygotic genome activation (ZGA) in mammals remains poorly understood. Primed mouse embryonic stem cells contain a rare subset of “2C-like” cells that are epigenetically and transcriptionally similar to the two cell embryo and thus represent an ideal system for studying ZGA transcription regulation. Recently, the transcription factor Dux, expressed exclusively in the minor wave of ZGA, was described to activate many downstream ZGA transcripts. However, it remains unknown what upstream maternal factors initiate ZGA either in a Dux dependent or independent manner. Here we performed a candidate-based overexpression screen, identifying, amongst others, Developmental Pluripotency Associated 2 (Dppa2) and 4 (Dppa4) as positive regulators of 2C-like cells and ZGA transcription. In the germ line, promoter DNA demethylation coincides with upregulation of Dppa2 and Dppa4 which remain expressed until E7.5 when their promoters are remethylated. Furthermore, Dppa2 and Dppa4 are also expressed during iPSC reprogramming at the time 2C-like ZGA transcription transiently peaks. Through a combination of overexpression, knockdown, knockout and rescue experiments, together with transcriptional analyses, we show that Dppa2 and Dppa4 directly regulate the 2C-like cell population and associated transcripts, including Dux and the Zscan4 cluster. Importantly, we tease apart the molecular hierarchy in which the 2C-like transcriptional program is initiated and stabilised. Dppa2 and Dppa4 require Dux to initiate 2C-like ZGA transcription, suggesting they act upstream by directly regulating Dux. Supporting this, ChIP-seq analysis revealed Dppa2 and Dppa4 bind to the Dux promoter and gene body and drive its expression. Zscan4c is also able to induce 2C-like cells in wild type cells, but, in contrast to Dux, can no longer do so in Dppa2/4 double knockout cells, suggesting it may act to stabilise rather than drive the transcriptional network. Our findings suggest a model in which Dppa2/4 binding to the Dux promoter leads to Dux upregulation and activation of the 2C-like transcriptional program which is subsequently reinforced by Zscan4c. Overall design: RNA-sequencing of ESCs treated with control, Dppa2 or Dppa4 siRNAs for 4 days.
Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program.
Specimen part, Cell line, Subject
View SamplesThe molecular regulation of zygotic genome activation (ZGA) in mammals remains poorly understood. Primed mouse embryonic stem cells contain a rare subset of “2C-like” cells that are epigenetically and transcriptionally similar to the two cell embryo and thus represent an ideal system for studying ZGA transcription regulation. Recently, the transcription factor Dux, expressed exclusively in the minor wave of ZGA, was described to activate many downstream ZGA transcripts. However, it remains unknown what upstream maternal factors initiate ZGA either in a Dux dependent or independent manner. Here we performed a candidate-based overexpression screen, identifying, amongst others, Developmental Pluripotency Associated 2 (Dppa2) and 4 (Dppa4) as positive regulators of 2C-like cells and ZGA transcription. In the germ line, promoter DNA demethylation coincides with upregulation of Dppa2 and Dppa4 which remain expressed until E7.5 when their promoters are remethylated. Furthermore, Dppa2 and Dppa4 are also expressed during iPSC reprogramming at the time 2C-like ZGA transcription transiently peaks. Through a combination of overexpression, knockdown, knockout and rescue experiments, together with transcriptional analyses, we show that Dppa2 and Dppa4 directly regulate the 2C-like cell population and associated transcripts, including Dux and the Zscan4 cluster. Importantly, we tease apart the molecular hierarchy in which the 2C-like transcriptional program is initiated and stabilised. Dppa2 and Dppa4 require Dux to initiate 2C-like ZGA transcription, suggesting they act upstream by directly regulating Dux. Supporting this, ChIP-seq analysis revealed Dppa2 and Dppa4 bind to the Dux promoter and gene body and drive its expression. Zscan4c is also able to induce 2C-like cells in wild type cells, but, in contrast to Dux, can no longer do so in Dppa2/4 double knockout cells, suggesting it may act to stabilise rather than drive the transcriptional network. Our findings suggest a model in which Dppa2/4 binding to the Dux promoter leads to Dux upregulation and activation of the 2C-like transcriptional program which is subsequently reinforced by Zscan4c. Overall design: RNA-sequencing of Dppa2 and/or Dppa4 knockout ESCs.
Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation.
Specimen part, Cell line, Treatment
View SamplesCancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cancer types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 megabases downstream of Myc that are occupied by SWI/SNF, as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in 3% of acute myeloid leukemia. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs Overall design: To profile the basal transcription level, we performed NSR and PolyA+ (illumine TruSeq) in a murine AML RN2 cell lines. To define the rapid downregulated genes in response to JQ1, BET bromodomian inhibitor, in RN2 cell, we performed RNA-seq in RN2 exposing to 250nM JQ1 for 48h time course.
Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation.
No sample metadata fields
View SamplesCancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cancer types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 megabases downstream of Myc that are occupied by SWI/SNF, as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in 3% of acute myeloid leukemia. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs
Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation.
Specimen part, Cell line
View SamplesA complex interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 is essential for triggering ethylene responses in plants.
Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis.
Age, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The synthetic glucocorticoids prednisolone and dexamethasone regulate the same genes in acute lymphoblastic leukemia cells.
Specimen part, Cell line, Treatment
View SamplesBackground: Glucocorticoids (GCs) cause apoptosis in malignant cells of lymphoid lineage by transcriptionally regulating a plethora of genes. As a result, GCs are included in almost all treatment protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukemia (chALL). The most commonly used synthetic GCs in the clinical setting are prednisolone and dexamethasone. While the latter has a higher activity and more effectively reduces the tumor load in patients, it is also accompanied by more serious adverse effects than the former. Whether this difference might be explained by regulation of different genes by the two GCs has never been addressed.
The synthetic glucocorticoids prednisolone and dexamethasone regulate the same genes in acute lymphoblastic leukemia cells.
Specimen part, Cell line
View SamplesBackground: Glucocorticoids (GCs) cause apoptosis in malignant cells of lymphoid lineage by transcriptionally regulating a plethora of genes. As a result, GCs are included in almost all treatment protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukemia (chALL). The most commonly used synthetic GCs in the clinical setting are prednisolone and dexamethasone. While the latter has a higher activity and more effectively reduces the tumor load in patients, it is also accompanied by more serious adverse effects than the former. Whether this difference might be explained by regulation of different genes by the two GCs has never been addressed.
The synthetic glucocorticoids prednisolone and dexamethasone regulate the same genes in acute lymphoblastic leukemia cells.
Specimen part, Cell line, Treatment
View Samples