SCA1, a fatal neurodegenerative disorder, is caused by a CAG expansion encoding a polyglutamine stretch in the protein ATXN1. We used RNA-seq to profile cerebellar RNA expression in ATXN1 mice, including lines with ataxia and progressive pathology and lines having ataxia in absence of Purkinje cell progressive pathology. Weighted Gene Coexpression Network Analysis of the cerebellar RNA-seq data revealed two gene networks that significantly correlated with disease, the Magenta (342 genes) and Light Yellow (35 genes) Modules. Features of the Magenta and Light Yellow Modules indicate they reflect distinctive pathways. The Magenta Module provides a description of suppressed transcriptional programs reflecting disease progression in Purkinje cells, while the Lt Yellow Module reflects other transcriptional programs activated in response to disease in Purkinje cells as well as other cerebellar cell types. We also found that up-regulation of cholecystokinin (Cck) blocked progression of Purkinje cell pathology and that loss of Cck function in mice lacking progressive disease enabled Purkinje cell pathology to progress to cell death. Overall design: Cerebellar mRNA expression profiles from ATXN1[82Q], ATXN1[30Q], and ATXN1[30Q]-D776 transgenic mice and wild type/FVB mice at 5 weeks, 12 weeks and 28 weeks of age ---------------------------- cuffnorm_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_genes.fpkm_tracking.txt: CuffNorm normalized values for all samples (snoRNAs and miRNAs removed) cuffdiff_week5_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_gene_exp.diff.txt: Cuffdiff comparison between samples at week 5; pairwise comparisons between ATXN1[82Q], ATXN1[30Q]D776 and FVB cuffdiff_week12_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_gene_exp.diff.txt: Cuffdiff comparison between samples at week 12; pairwise comparisons between ATXN1[82Q], ATXN1[30Q]D776 and FVB cuffdiff_week28_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_gene_exp.diff.txt: Cuffdiff comparison between samples at week 28; pairwise comparisons between ATXN1[82Q], ATXN1[30Q]D776 and FVB cuffdiff_week5_vs_week12_vs_week28_ATXN1.82Q_gene_exp.diff.txt: Cuffdiff comparison between ATXN1[82Q] at week 5, week 12 and week 28 cuffdiff_week5_vs_week12_vs_week28_ATXN1.30Q.D776_gene_exp.diff.txt: Cuffdiff comparison between ATXN1[30Q]D776 at week 5, week 12 and week 28 cuffdiff_week5_vs_week12_vs_week28_FVB_gene_exp.diff.txt: Cuffdiff comparison between wt/FVB at week 5, week 12 and week 28
Cerebellar Transcriptome Profiles of ATXN1 Transgenic Mice Reveal SCA1 Disease Progression and Protection Pathways.
Age, Specimen part, Cell line, Subject
View SamplesmiR-155 is a microRNA associated with poor prognosis in lymphoma and leukemia and has been implicated in the progression of Mycosis Fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). In this study, we developed and tested Cobomarsen (MRG-106), a locked nucleic acid-modified oligonucleotide inhibitor of miR-155. In MF cell lines in vitro, inhibition of miR-155 with Cobomarsen de-repressed direct miR-155 targets, decreased expression of multiple gene pathways associated with cell survival, reduced survival signaling, decreased cell proliferation, and activated apoptosis.
Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma.
Specimen part, Treatment, Time
View SamplesGene expression profiling of scalp skin biopsies from patients with alopecia areata or normal healthy controls
Molecular signatures define alopecia areata subtypes and transcriptional biomarkers.
Sex, Age, Disease, Subject
View SamplesTranscriptional profiling after inhibition of cellulose synthesis by thaxtomin A and isoxaben in Arabidopsis thaliana suspension cells
Transcriptional profiling in response to inhibition of cellulose synthesis by thaxtomin A and isoxaben in Arabidopsis thaliana suspension cells.
Specimen part
View SamplesPurpose: There is growing evidence that interaction between stromal and tumor cells is pivotal in breast cancer progression and response to therapy. Since the pioneer work of Allinen et al. suggested that during breast cancer progression striking changes occur in CD10+ stromal cells, we aimed to better characterize this cell population and its clinical relevance.
Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment.
Specimen part, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.
Specimen part
View SamplesExcessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors (APs), however, the underlying molecular mechanisms remain unclear. Here, we identify Heme Oxygenase-1 (HO-1) as selectively being upregulated in the AP fraction of WAT, upon high-fat diet (HFD) feeding. Specific conditional deletion of HO-1 in APs of Hmox1fl/fl-Pdgfra Cre mice enhanced HFD-dependent visceral AP proliferation and differentiation, upstream of Cebp and PPAR. Opposite effects on human preadipocyte proliferation and differentiation in vitro were observed following HO-1 overexpression. Mechanistically, HO-1 acts upstream of AKT2 via ROS thresholding in mitochondria. Deletion of HO-1 in APs is sufficient to lower blood glucose, insulin and free fatty acid levels as well as liver steatosis during obesity, an effect not seen when HO-1 was conditionally deleted at later stages of adipogenesis using AdipoQ-Cre. Together, our data identify HO-1 as a diet-induced regulator limiting visceral adipose tissue hyperplasia during obesity.
HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.
Specimen part
View SamplesExcessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors (APs), however, the underlying molecular mechanisms remain unclear. Here, we identify Heme Oxygenase-1 (HO-1) as selectively being upregulated in the AP fraction of WAT, upon high-fat diet (HFD) feeding. Specific conditional deletion of HO-1 in APs of Hmox1fl/fl-Pdgfra Cre mice enhanced HFD-dependent visceral AP proliferation and differentiation, upstream of Cebp and PPAR. Opposite effects on human preadipocyte proliferation and differentiation in vitro were observed following HO-1 overexpression. Mechanistically, HO-1 acts upstream of AKT2 via ROS thresholding in mitochondria. Deletion of HO-1 in APs is sufficient to lower blood glucose, insulin and free fatty acid levels as well as liver steatosis during obesity, an effect not seen when HO-1 was conditionally deleted at later stages of adipogenesis using AdipoQ-Cre. Together, our data identify HO-1 as a diet-induced regulator limiting visceral adipose tissue hyperplasia during obesity.
HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex.
Specimen part, Cell line
View SamplesNuclear LASP-1 has a direct correlation with the overall survival of breast cancer patients. Gene expression analysis of MCF7 human breast cancer cells cultured in 3D-Matrigel was performed.
LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex.
Specimen part, Cell line
View Samples