This SuperSeries is composed of the SubSeries listed below.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesSystems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesSystems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesSystems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesSystems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesWe performed systems analyses of immune responses to the meningococcal polysaccharide (MPSV4) and conjugate (MCV4) vaccines in healthy adults.
Molecular signatures of antibody responses derived from a systems biology study of five human vaccines.
Specimen part, Treatment, Time
View SamplesHMF and furfural were pulse added to xylose-utilizing Saccharomyces cerevisiae during either the glucose consumption phase or the xylose consumption phase. Transcriptome samples were collected before and one hour after pulsing of inhibitors.
Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase.
Treatment
View SamplesThe goal of this study is to characterize the human immune responses to the live attenuated Herpes zoster vaccine Zostavax, to understand the molecular and cellular mechanisms that lead to antibody production and T cell induction, and to understand the difference between young and elderly healthy adults. The overall data collection included antigen specific assays, flow cytometric profiling of innate and adaptive cell populations, measurement of serum cytokines, and transcriptomic and metabolomics signatures. Zostavax induced robust antigen-specific antibody responses, and significant T cell responses. A number of gene pathways were upregulated after vaccination. Using our previously developed blood transcription modules, we also identified transcriptomic correlates to antibody response. Furthermore, this study revealed strong association between PBMC transcriptomics and plasma metabolomics. Integrative analysis of orthogonal datasets from metabolomics, transcriptomic and immune profiling facilitated a temporal reconstruction of Zostavax induced biological networks culminating in antibody responses , and the delineation of novel molecular correlates of vaccine immunity.
Metabolic Phenotypes of Response to Vaccination in Humans.
Sex, Age, Specimen part, Race, Subject
View SamplesMalignant melanoma is a common and frequently lethal disease. Current therapeutic interventions have little effect on survival, emphasizing the need for a better understanding of the genetic, epigenetic, and phenotypic changes in melanoma formation and progression. We identified genes that were not previously known to be silenced by methylation in melanoma using a microarray-based screen following treatment of melanoma cell lines with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine.
Epigenetic silencing of novel tumor suppressors in malignant melanoma.
No sample metadata fields
View SamplesT cell dysfunction is an important feature of many chronic viral infections. In particular, it was shown that PD-1 regulates T cell dysfunction during chronic LCMV infection in mice and PD-1 high cells exhibit an intense exhausted gene signature. These findings were extended to human chronic infections such as HIV, HCV and HBV. However, it is not known if PD-1 high cells of healthy humans have the traits of exhausted cells. In this study, we provide a comprehensive description of phenotype, function and gene expression profiles of PD-1 high versus PD-1 low CD8 T cells in the peripheral blood of healthy human adults as following: 1) The percentage of naive and memory CD8 T cells varied widely in the peripheral blood cells of healthy humans and PD-1 was expressed by the memory CD8 T cells. 2) PD-1 high CD8 T cells in healthy humans did not significantly correlated with the PD-1 high exhausted gene signature of HIV specific human CD8 T cells or chronic LCMV specific CD8 T cells from mice. 3) PD-1 expression did not directly affect the ability of CD8 T cells to secrete cytokines in healthy adults. 4) PD-1 was expressed by the effector memory (TEM) compared to terminally differentiated effector (TEMRA) CD8 T cells. 5) Finally, an interesting inverse relationship between CD45RA and PD-1 expression was observed.
Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults.
No sample metadata fields
View Samples