Domestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens.
Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting.
Specimen part
View SamplesWe used a smooth muscle cell-specific mineralocorticoid receptor knockout mouse to generate young and aged MR-intact and SMC-MR-KO aortic mRNA to examine the effect of age on vascular mRNA alterations in the presence and absence of SMC-MR.
Smooth Muscle Cell-Mineralocorticoid Receptor as a Mediator of Cardiovascular Stiffness With Aging.
Sex, Specimen part
View SamplesGlobal gene expression patterns were determined from microarray results from sham surgery or following 1 week of plantaris muscle hypertrophy induced by synergist ablation in young adult Pax7-DTA mice (4 months).
Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Aerobic glycolysis tunes YAP/TAZ transcriptional activity.
Cell line, Treatment
View SamplesReprogramming of cancer cell metabolism toward aerobic glycolysis, i.e. the Warburg effect, is a hallmark of cancer; according to current views, the rationale for selecting such energy-inefficient metabolism is the need to increase cellular biomass to sustain production of daughter cells and proliferation. In this view, metabolic reprogramming is considered as a simple phenotypic endpoint that occurs as a consequence of signal transduction mechanisms, including oncogene-driven nutrient uptake and metabolic rewiring. A newly emerging paradigm is instead that transcriptional networks and oncogenic signaling can also be regulated downstream of metabolic pathways, that assume causative roles in controlling cancer cell behavior, above and beyond their core biochemical function. To explore possible links between glucose metabolism and nuclear gene transcription we compared immortalized mammary epithelial cells (MCF10A) and metastatic breast cancer cells (MDA-MB-231) growing in high glucose or in the presence of a widely used inhibitor of glucose uptake / glucose metabolism, 2-deoxy-glucose (2DG).
Aerobic glycolysis tunes YAP/TAZ transcriptional activity.
Cell line, Treatment
View SamplesYAP1 (Yes-associated protein 1) and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1) are nucleo-cytoplasmic shuttling proteins that can function in the nucleus as transcriptional coactivators. Their role in regulating gene transcription has been so far mainly investigated by overexpressing YAP1 or TAZ, while here we sought to determine which genes are regulated by endogenous levels of YAP/TAZ. To this end, we compared MCF10A cells transfected with a control non-targeting siRNA to cells transfected with two independent mixes of siRNA targeting both YAP and TAZ.
Aerobic glycolysis tunes YAP/TAZ transcriptional activity.
Cell line
View SamplesYAP1 (Yes-associated protein 1) and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1) are nucleo-cytoplasmic shuttling proteins that can function in the nucleus as transcriptional coactivators. Their role in regulating gene transcription has been so far mainly investigated by overexpressing YAP1 or TAZ, while here we sought to determine which genes are regulated by endogenous levels of YAP/TAZ. To this end, we compared MCF10A cells transfected with a control non-targeting siRNA to cells transfected with two independent mixes of siRNA targeting both YAP and TAZ.
Aerobic glycolysis tunes YAP/TAZ transcriptional activity.
Cell line
View SamplesTo investigate the role of YAP/TAZ as b-catenin inhibitors, we compared the expression profiles of Rex1GFPd2 ES cells transfected with siControl#1, siControl#2, siYAP/TAZ#1, siYAP/TAZ#2 and cultured in 2i medium or PD-only medium
YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response.
Specimen part
View SamplesGene signature determination of the effect of a new bromodomain inhibitor among a representative set of leukemic cell lines
BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells.
Cell line, Compound
View SamplesTGF ligands act as tumor suppressors in early stage tumors but are paradoxically diverted into potent prometastatic factors in advanced cancers. The molecular nature of this switch remains enigmatic. We now show that TGF-dependent cell migration, invasion and metastasis are empowered by mutant-p53.
A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis.
No sample metadata fields
View Samples