The zinc finger e-box binding homeobox 1 (ZEB1) transcription factor is a master regulator of the epithelial to mesenchymal transition (EMT), and of the reverse mesenchymal to epithelial transition (MET) processes. ZEB1 plays an integral role in mediating cell state transitions during cell lineage specification, wound healing and disease. EMT/MET are characterized by distinct changes in molecular and cellular phenotype that are generally context-independent. Posterior polymorphous corneal dystrophy (PPCD), associated with ZEB1 insufficiency, provides a new biological context in which to understand and evaluate the classic EMT/MET paradigm. PPCD is characterized by a cadherin-switch and transition to an epithelial-like transcriptomic and cellular phenotype, which we study in a cell-based model of PPCD generated using CRISPR-Cas9-mediated ZEB1 knockout in corneal endothelial cells (CEnCs). Transcriptomic and functional studies support the hypothesis that CEnC undergo an MET-like transition in PPCD, termed endothelial to epithelial transition (EnET), and lead to the conclusion that EnET may be considered a corollary to the classic EMT/MET paradigm. Overall design: Three independent clones for each genotype were generated. ZEB1+/+ and ZEB1+/- (generated using CRISPR-Cas9 gene editing) parental lines were initially generated, then transduced with lentivirus containing ZEB1 cDNA to generate ZEB1 transgenic lines of the parental lines.
ZEB1 insufficiency causes corneal endothelial cell state transition and altered cellular processing.
Subject
View SamplesHepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The current standard therapy for chronic hepatitis C (CHC) consists of a combination of pegylated IFN alpha (pegIFN-alpha) and ribavirin. It achieves a sustained viral clearance in only 5060% of patients. To learn more about molecular mechanisms underlying treatment failure, we investigated IFN-induced signaling in paired liver biopsies collected from CHC patients before and after administration of pegIFN-alpha. In patients with a rapid virological response to treatment, pegIFN-alpha induced a strong up-regulation of IFN-stimulated genes (ISGs). As shown previously, nonresponders had high expression levels of ISGs before therapy. Analysis of posttreatment biopsies of these patients revealed that pegIFN-alpha did not induce expression of ISGs above the pretreatment levels. In accordance with ISG expression data, phosphorylation, DNA binding, and nuclear localization of STAT1 indicated that the IFN signaling pathway in nonresponsive patients is preactivated and refractory to further stimulation. Some features characteristic of nonresponders were more accentuated in patients infected with HCV genotypes 1 and 4 compared with genotypes 2 and 3, providing a possible explanation for the poor response of the former group to therapy. Taken together with previous findings, our data support the concept that activation of the endogenous IFN system in CHC not only is ineffective in clearing the infection but also may impede the response to therapy, most likely by inducing a refractory state of the IFN signaling pathway.
Interferon signaling and treatment outcome in chronic hepatitis C.
No sample metadata fields
View SamplesUsing 5 differents approaches, including RNA sequencing, we demonstrated that macrophages that specifically infiltrate renal tumors, express the immunosuppressive transcription factor Foxp3. Overall design: Examination of the Foxp3 mRNA expression in 3 different cell subsets (including CD4 T cells (CD4), type-1 macrophages (M1) and type-2 macrophages (M2))
Foxp3 expression in macrophages associated with RENCA tumors in mice.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Interferon-γ-stimulated genes, but not USP18, are expressed in livers of patients with acute hepatitis C.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesApproximately 50% of patients with chronic hepatitis C (CHC) have a sustained virologic response (SVR) to treatment with pegylated interferon (pegINF)- and ribavirin. Non-response to treatment is associated with constitutively increased expression of IFN-stimulated genes (ISGs) in the liver. Treatment of patients with acute hepatitis C (AHC) is more effective, with SVR rates >90%. We investigated mechanisms of the different responses of patients with CHC and AHC to pegIFN- therapy. We analyzed IFN signaling and ISG expression in liver samples from patients with acute hepatitis C (AHC), patients with chronic hepatitis (CHC), and individuals without hepatitis C (controls) using microarray, immunohistochemical, and protein analyses. Findings were compared with those from primary human hepatocytes stimulated with IFN- or IFN-, as reference sets. Expression levels of 100s of genes, primarily those regulated by IFN-, were altered in liver samples from patients with AHC compared with controls. Expression of IFN-stimulated genes was induced in liver samples from patients with AHC, whereas expression of IFN-stimulated genes was induced in samples from patients with CHC. In an expression analysis of negative regulators of IFN- signaling, we did not observe differences in expression of SOCS1 or SOCS3 between liver samples from patients with AHC and those with CHC. However, USP18 (another negative regulator of IFN- signaling), was upregulated in liver samples of patients with CHC that did not respond to therapy, but not in AHC. In conclusion, differences in expression of ISGs might account for the greater response of patients with AHC, compared to those with CHC, to treatment with pegINF- and ribavirin. Specifically, USP18 is upregulated in liver samples of patients with CHC that do not respond to therapy, but not in patients with AHC.
Interferon-γ-stimulated genes, but not USP18, are expressed in livers of patients with acute hepatitis C.
Specimen part, Treatment, Subject, Time
View SamplesApproximately 50% of patients with chronic hepatitis C (CHC) have a sustained virologic response (SVR) to treatment with pegylated interferon (pegINF)- and ribavirin. Non-response to treatment is associated with constitutively increased expression of IFN-stimulated genes (ISGs) in the liver. Treatment of patients with acute hepatitis C (AHC) is more effective, with SVR rates >90%. We investigated mechanisms of the different responses of patients with CHC and AHC to pegIFN- therapy. We analyzed IFN signaling and ISG expression in liver samples from patients with acute hepatitis C (AHC), patients with chronic hepatitis (CHC), and individuals without hepatitis C (controls) using microarray, immunohistochemical, and protein analyses. Findings were compared with those from primary human hepatocytes stimulated with IFN- or IFN-, as reference sets. Expression levels of 100s of genes, primarily those regulated by IFN-, were altered in liver samples from patients with AHC compared with controls. Expression of IFN-stimulated genes was induced in liver samples from patients with AHC, whereas expression of IFN-stimulated genes was induced in samples from patients with CHC. In an expression analysis of negative regulators of IFN- signaling, we did not observe differences in expression of SOCS1 or SOCS3 between liver samples from patients with AHC and those with CHC. However, USP18 (another negative regulator of IFN- signaling), was upregulated in liver samples of patients with CHC that did not respond to therapy, but not in AHC. In conclusion, differences in expression of ISGs might account for the greater response of patients with AHC, compared to those with CHC, to treatment with pegINF- and ribavirin. Specifically, USP18 is upregulated in liver samples of patients with CHC that do not respond to therapy, but not in patients with AHC.
Interferon-γ-stimulated genes, but not USP18, are expressed in livers of patients with acute hepatitis C.
Specimen part, Disease, Disease stage
View SamplesPancreatic ductal adenocarcinoma (PDAC) has a characteristically dense stroma comprised predominantly of cancer associated fibroblasts (CAFs). CAFs promote tumor growth, metastasis and treatment resistance. We aimed to investigate the molecular changes and functional consequences associated with chemotherapy treatment of PDAC CAFs.
Chemotherapy-Induced Inflammatory Gene Signature and Protumorigenic Phenotype in Pancreatic CAFs via Stress-Associated MAPK.
Specimen part
View SamplesClinical symptoms of dengue virus (DENV) infection, the most prevalent arthropod-borne viral disease, range from classical mild dengue fever to severe, life-threatening dengue shock syndrome. However, most DENV infections cause few or no symptoms. Asymptomatic DENV-infected patients provide a unique opportunity to decipher the host immune responses leading to virus elimination without negative impact on an individuals health. We used an integrated approach of transcriptional profiling and immunological analysis to compare a Cambodian population of strictly asymptomatic viremic individuals with clinical dengue patients. Whereas inflammatory pathways and innate immune response pathways were similar between asymptomatic individuals and clinical dengue patients, expression of proteins related to antigen presentation and subsequent T and B cell activation pathways were differentially regulated, independent of viral load and previous DENV infection history. Feedback mechanisms controlled the immune response in asymptomatic viremic individuals, as demonstrated by increased activation of T cell apoptosis-related pathways and FcRIIB signaling associated with decreased anti-DENV specific antibody concentrations. Taken together, our data illustrate that symptom-free DENV infection in children is associated with determined by increased activation of the adaptive immune compartment and proper control mechanisms, leading to elimination of viral infection without excessive immune activation, with implications for novel vaccine development strategies
Increased adaptive immune responses and proper feedback regulation protect against clinical dengue.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesOligodendrocytes (OLs) and myelin are critical for normal brain function and they have been implicated in neurodegeneration. Human neuroimaging studies have demonstrated that alterations in axons and myelin occur early in Alzheimer's Disease (AD) course. However, the molecular mechanism underlying the role of OLs in AD remains largely unknown. In this study, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic, and proteomic data in human AD postmortem brain samples. These robust OL networks were highly enriched for genes associated with AD risk variants, including BIN1. We corroborated the structure of the AD OL coexpression and gene-gene interaction networks through ablation of genes identified as key drivers of the networks, including UGT8, CNP, MYRF, PLP1, NPC1, and NDGR1. Perturbations of these key drivers not only caused dysregulation in their associated network neighborhoods, but also mimicked pathways of gene expression dysregulation seen in human AD postmortem brain samples. In particular, the OL subnetwork controlled by the AD risk gene PSEN1 was strongly dysregulated in AD, suggesting a potential role of PSEN1 in disrupting the myelination pathway towards the onset of AD. In summary, this study built and systematically validated the first comprehensive molecular blueprint of OL dysregulation in AD, and identified key OL- and myelination-related genes and networks as potential candidate targets for the future development of AD therapies. Overall design: The mouse knockout models have been previously described for each of Ugt8 (Coetzee et al., 1996), Cnp (Lappe-Siefke et al., 2003), and Plp1 (Klugmann et al., 1997). For each of the two conditions studied (control and homozygous knockout mice), five mice of either sex were sacrificed at postnatal day 20 and brains were flashed-frozen until analysis. The frontal cortex (FC) and cerebellum (CBM) were dissected out and individually processed. RNA was isolated using Trizol reagent and processed using Ribo-Zero rRNA removal. RNA-sequencing was performed using the Illumina HiSeq2000 with 100 nucleotide paired-end reads. RNA-sequencing reads were mapped to the mouse genome (mm10, UCSC assembly) using Bowtie (version 2.2.3.0), TopHat (version 2.0.11), and SamTools (version 0.1.19.0) using a read length of 100. Reads were converted to counts at the gene level using HTSeq on the BAM files from TopHat2 using the UCSC known genes data set.
Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease.
Specimen part, Subject
View Samples