Response to allergen was studied in bronchial epithelial cell line H292. Cells were cultured and subsequently exposed to House dust mite or vessel (saline)
Allergen induced gene expression of airway epithelial cells shows a possible role for TNF-alpha.
No sample metadata fields
View SamplesWe have analyzed gene expression microarray datasets from four different clinical trials to assess accuracy of gene expression based signature in predicting treatment complete response in patients with multiple myeloma. Two of four datasets were made available via The Intergroupe Francophone du Mylome (IFM) group, and remaining two datasets were downloaded from NCBI GEO portal with accession IDs: GSE19784 (HOVON65/GMMG-HD4 trial) and GSE9782 (APEX/SUMMIT trial). Analysis UUID: datasets_archive--2afcd42a-7e12-11e3-9145-5fcc1e060548--15-Jan-2014-12-23-44-CST.
Gene expression profile alone is inadequate in predicting complete response in multiple myeloma.
No sample metadata fields
View SamplesIn order to identify relevant, molecularly defined subgroups in Multiple Myeloma (MM), gene expression profiling (GEP) was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/ GMMG-HD4 trial using Affymetrix GeneChip U133 plus 2.0 arrays. Hierarchical clustering identified 10 distinct subgroups. Using this dataset as training data, a prognostic signature was built. The dataset consists of 282 CEL files previously used in the hierarchical clustering study of Broyl et al (Blood, 116(14):2543-53, 2010) outlined above. To this set 8 CEL-files/gene expression profiles were added. Using this set of 290 CEL-files, a prognostic signature of 92 genes (EMC-92-genesignature) was generated by supervised principal components analysis combined with simulated annealing (Kuiper et al.).
Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A multiple myeloma classification system that associates normal B-cell subset phenotypes with prognosis.
Specimen part, Disease
View SamplesTodays diagnostic tests for multiple myeloma (MM) reflect the criteria of the updated WHO classification based on biomarkers and clinicopathologic heterogeneity. To that end, we propose a new subtyping of myeloma plasma cells (PC) by B-cell subset associated gene signatures (BAGS), from the normal B-cell hierarchy in the bone marrow (BM). To do this, we combined FACS and GEP data from normal BM samples to generate classifiers by BAGS for the PreBI, PreBII, immature (Im), nave (N), memory (M) and PC subsets. The resultant tumor assignments in available clinical datasets exhibited similar BAGS subtype frequencies in four cohorts across 1302 individual cases. The prognostic impact of BAGS was analyzed in patients treated with high dose melphalan as first line therapy in three prospective trials: UAMS, HOVON65/GMMG-HD4 and MRC Myeloma IX with Affymetrix U133 plus 2.0 microarray data available from diagnostic myeloma PC samples. The BAGS subtypes were significantly associated with progression free (PFS) and overall survival (OS) (PFS, P=3.05e06 and OS, P=1.06e11) in a meta-analysis of 926 pts. The major impact was observed within the PreBII and M subtypes conferred with significant inferior prognosis compared to the Im, N and PC subtypes. Cox proportional hazard meta-analysis documented that the BAGS subtypes added significant and independent prognostic information to the TC classification system and ISS staging. BAGS subtype analysis identified transcriptome differences and a number of novel differentially spliced genes. We have identified hierarchal subtype differences in the myeloma plasma cells, with prognostic impact. This observation support an acquired reversible B-cell trait and phenotypic plasticity as a hallmark, also in MM.
A multiple myeloma classification system that associates normal B-cell subset phenotypes with prognosis.
Specimen part
View SamplesTodays diagnostic tests for multiple myeloma (MM) reflect the criteria of the updated WHO classification based on biomarkers and clinicopathologic heterogeneity. To that end, we propose a new subtyping of myeloma plasma cells (PC) by B-cell subset associated gene signatures (BAGS), from the normal B-cell hierarchy in the bone marrow (BM). To do this, we combined FACS and GEP data from normal BM samples to generate classifiers by BAGS for the PreBI, PreBII, immature (Im), nave (N), memory (M) and PC subsets. The resultant tumor assignments in available clinical datasets exhibited similar BAGS subtype frequencies in four cohorts across 1302 individual cases. The prognostic impact of BAGS was analyzed in patients treated with high dose melphalan as first line therapy in three prospective trials: UAMS, HOVON65/GMMG-HD4 and MRC Myeloma IX with Affymetrix U133 plus 2.0 microarray data available from diagnostic myeloma PC samples. The BAGS subtypes were significantly associated with progression free (PFS) and overall survival (OS) (PFS, P=3.05e06 and OS, P=1.06e11) in a meta-analysis of 926 pts. The major impact was observed within the PreBII and M subtypes conferred with significant inferior prognosis compared to the Im, N and PC subtypes. Cox proportional hazard meta-analysis documented that the BAGS subtypes added significant and independent prognostic information to the TC classification system and ISS staging. BAGS subtype analysis identified transcriptome differences and a number of novel differentially spliced genes. We have identified hierarchal subtype differences in the myeloma plasma cells, with prognostic impact. This observation support an acquired reversible B-cell trait and phenotypic plasticity as a hallmark, also in MM.
A multiple myeloma classification system that associates normal B-cell subset phenotypes with prognosis.
Disease
View SamplesThe intercalated disc of cardiac myocytes is emerging as a crucial structure in the heart. Loss of intercalated disc proteins like N-cadherin causes lethal cardiac abnormalities, mutations in intercalated disc proteins cause human cardiomyopathy. A comprehensive screen for novel mechanisms in failing hearts demonstrated that expression of the lysosomal integral membrane protein-2 (LIMP-2) is increased in cardiac hypertrophy and heart failure in both rat and human myocardium. Complete loss of LIMP-2 in genetically engineered mice did not affect cardiac development; however these LIMP-2 null mice failed to mount a hypertrophic response to increased blood pressure but developed cardiomyopathy. Disturbed cadherin localization in these hearts suggested that LIMP-2 has important functions outside lysosomes. Indeed, we also find LIMP-2 in the intercalated disc, where it associates with cadherin. RNAi-mediated knockdown of LIMP-2 decreases the binding of phosphorylated b-catenin to cadherin, while overexpression of LIMP-2 has the opposite effect. Taken together, our data show that lysosomal integrated membrane protein-2 is crucial to mount the adaptive hypertrophic response to cardiac loading. We demonstrate a novel role for LIMP-2 as an important mediator of the intercalated disc.
Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy.
No sample metadata fields
View SamplesTo study differentially expressed genes in neuro-ectodermal cell lines
Downregulation of Axl in non-MYCN amplified neuroblastoma cell lines reduces migration.
Sex, Specimen part
View SamplesHigh anaplastic lymphoma kinase (ALK) protein levels may be correlated with an unfavorable prognosis in neuroblastoma (NBL) patients, regardless of ALK mutation status. We therefore examined the correlation between levels of ALK, phosphorylated ALK (pALK) and downstream signaling proteins and response to ALK inhibition in a large panel of both ALK mutated (MUT) and wild type (WT) NBL cell lines. Six of the nineteen NBL cell lines had a point mutation and four an amplification of the ALK gene. ALK amplified cell lines showed similar ALK levels and ALK inhibitor sensitivity as WT cell lines and were therefore co-analyzed. The ALK mRNA (p=0.043), ALK 220 kDa (p=0.009) and ALK 140 kDa (p=0.025) protein levels were higher in ALK mutant (n=6) than WT cell lines (n=13). ALK mRNA and protein levels significantly correlated with ERK1 and ERK2 protein levels, and also with PHOX2B mRNA levels, a neural differentiation marker which is mutated in NBL. Response to ALK inhibitor TAE684 was also significantly correlated with ALK levels. ALK mutant cell lines (n=4) demonstrated a higher sensitivity towards ALK inhibitor TAE684 (14.9 fold more sensitive, p=0.004) than eight WT cell lines. These results underline the importance of ALK mutations but also ALK levels for response to ALK inhibitors in NBL cell lines. Furthermore, the strong correlation of PHOX2B and ALK suggests that neural differentiation stage may be correlated with ALK levels in neuroblastoma. These data will enhance understanding of ALK inhibitor response in future patient trials.
Anaplastic lymphoma kinase (ALK) inhibitor response in neuroblastoma is highly correlated with ALK mutation status, ALK mRNA and protein levels.
Sex, Specimen part
View SamplesThe leg of healthy volunteers was locally deconditioned using three weeks of unilateral lower limb suspension (ULLS). The extremely deconditioned legs of subjects with a spinal cord injury (SCI) were trained using eight weeks of functional electrical stimulation (FES) exercise, 2-3 times per week (total 20 sessions).
Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle.
Subject, Time
View Samples